Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On the mod $ p$ kernel of the theta operator


Author: Shoyu Nagaoka
Journal: Proc. Amer. Math. Soc. 143 (2015), 4237-4244
MSC (2010): Primary 11F46; Secondary 11F33
DOI: https://doi.org/10.1090/S0002-9939-2015-12567-1
Published electronically: March 18, 2015
MathSciNet review: 3373923
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theta operator is a generalization of the classical Ramanujan operator to the case of Siegel modular forms. We construct Siegel modular forms for which the images of the theta operator mod $ p$ are vanishing.


References [Enhancements On Off] (What's this?)

  • [1] Siegfried Böcherer, Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math. 45 (1984), no. 3, 273–288 (German, with English summary). MR 734842, https://doi.org/10.1007/BF01158040
  • [2] Siegfried Böcherer and Shoyu Nagaoka, On mod 𝑝 properties of Siegel modular forms, Math. Ann. 338 (2007), no. 2, 421–433. MR 2302069, https://doi.org/10.1007/s00208-007-0081-7
  • [3] L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174–182. MR 0109132, https://doi.org/10.1515/crll.1959.202.174
  • [4] Helmut Klingen, Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics, vol. 20, Cambridge University Press, Cambridge, 1990. MR 1046630
  • [5] H. Kodama, T. Kikuta and S. Nagaoka, Note on Igusa's cusp form of weight 35, to appear in Rocky Mountain J. Math.
  • [6] H. Kodama and S. Nagaoka, A congruence relation satisfied by Siegel cusp form of odd weight (Japanese), J. School Sci. Eng. Kinki Univ. 49 (2013), 9-15.
  • [7] Shoyu Nagaoka, A remark on Serre’s example of 𝑝-adic Eisenstein series, Math. Z. 235 (2000), no. 2, 227–250. MR 1795506, https://doi.org/10.1007/s002090000134
  • [8] Jean-Pierre Serre, Formes modulaires et fonctions zêta 𝑝-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145
    J.-P. Serre, Correction to: “Formes modulaires et fonctions zêta 𝑝-adiques” (Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191–268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 149–150. Lecture Notes in Math., Vol. 476. MR 0404146
  • [9] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F46, 11F33

Retrieve articles in all journals with MSC (2010): 11F46, 11F33


Additional Information

Shoyu Nagaoka
Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email: nagaoka@math.kindai.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2015-12567-1
Received by editor(s): April 4, 2014
Received by editor(s) in revised form: June 13, 2014, and June 16, 2014
Published electronically: March 18, 2015
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2015 American Mathematical Society