Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finiteness of the polyhedral $ \mathbb{Q}$-codegree spectrum


Author: Andreas Paffenholz
Journal: Proc. Amer. Math. Soc. 143 (2015), 4863-4873
MSC (2010): Primary 52B20; Secondary 14M25, 14C20
DOI: https://doi.org/10.1090/proc/12620
Published electronically: June 3, 2015
MathSciNet review: 3391044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove Fujita's spectrum conjecture for polarized varieties in the case of $ \mathbb{Q}$-Gorenstein projective toric varieties of index $ r$. The theorem follows from a combinatorial result using the connection between lattice polytopes and polarized projective toric varieties. By this correspondence the spectral value of the polarized toric variety equals the $ \mathbb{Q}$-codegree of the polytope. Now the main theorem of the paper shows that the spectrum of the $ \mathbb{Q}$-codegree is finite above any positive threshold in the class of lattice polytopes with $ \alpha $-canonical normal fan for any fixed $ \alpha >0$.


References [Enhancements On Off] (What's this?)

  • [BS94] Mauro C. Beltrametti and Andrew J. Sommese, Some effects of the spectral values on reductions, Classification of algebraic varieties (L'Aquila, 1992) Contemp. Math., vol. 162, Amer. Math. Soc., Providence, RI, 1994, pp. 31-48. MR 1272692 (95d:14006), https://doi.org/10.1090/conm/162/01526
  • [BS95] Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995. MR 1318687 (96f:14004)
  • [Cer12] G. Di Cerbo.
    On Fujita's log spectrum conjecture.
    preprint, October 2012,
    arxiv:1210.5324.
  • [CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (2012g:14094)
  • [DDP09] Alicia Dickenstein, Sandra Di Rocco, and Ragni Piene, Classifying smooth lattice polytopes via toric fibrations, Adv. Math. 222 (2009), no. 1, 240-254. MR 2531373 (2010d:52027), https://doi.org/10.1016/j.aim.2009.04.002
  • [DHNP11] Sandra Di Rocco, Christian Haase, Benjamin Nill, and Andreas Paffenholz, Polyhedral adjunction theory, Algebra Number Theory 7 (2013), no. 10, 2417-2446. MR 3194647, https://doi.org/10.2140/ant.2013.7.2417
  • [Ewa88] Günter Ewald, On the classification of toric Fano varieties, Discrete Comput. Geom. 3 (1988), no. 1, 49-54. MR 918178 (88m:14037), https://doi.org/10.1007/BF02187895
  • [Fuj92] Takao Fujita, On Kodaira energy and adjoint reduction of polarized manifolds, Manuscripta Math. 76 (1992), no. 1, 59-84. MR 1171156 (93i:14032), https://doi.org/10.1007/BF02567747
  • [Fuj96] Takao Fujita, On Kodaira energy of polarized log varieties, J. Math. Soc. Japan 48 (1996), no. 1, 1-12. MR 1361544 (97b:14018), https://doi.org/10.2969/jmsj/04810001
  • [Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037 (94g:14028)
  • [Hen83] Douglas Hensley, Lattice vertex polytopes with interior lattice points, Pacific J. Math. 105 (1983), no. 1, 183-191. MR 688412 (84c:52016)
  • [LZ91] Jeffrey C. Lagarias and Günter M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior points in a sublattice, Canad. J. Math. 43 (1991), no. 5, 1022-1035. MR 1138580 (92k:52032), https://doi.org/10.4153/CJM-1991-058-4
  • [Pik01] Oleg Pikhurko, Lattice points in lattice polytopes, Mathematika 48 (2001), no. 1-2, 15-24 (2003). MR 1996360 (2004f:52009), https://doi.org/10.1112/S0025579300014339
  • [Som86] Andrew John Sommese, On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985) Lecture Notes in Math., vol. 1194, Springer, Berlin, 1986, pp. 175-213. MR 855885 (87m:14049), https://doi.org/10.1007/BFb0077004

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52B20, 14M25, 14C20

Retrieve articles in all journals with MSC (2010): 52B20, 14M25, 14C20


Additional Information

Andreas Paffenholz
Affiliation: TU Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293 Darmstadt, Germany
Email: paffenholz@mathematik.tu-darmstadt.de

DOI: https://doi.org/10.1090/proc/12620
Keywords: Fujita's spectrum conjecture, toric varieties, spectral value, Kodaira energy, lattice polytopes, $\mathbb{Q}$-codegree
Received by editor(s): April 20, 2014
Published electronically: June 3, 2015
Additional Notes: The author has been supported by the Priority Program 1489 of the German Research Council (DFG)
Communicated by: Lev Borisov
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society