Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Gysin formula for Hall-Littlewood polynomials

Author: Piotr Pragacz
Journal: Proc. Amer. Math. Soc. 143 (2015), 4705-4711
MSC (2010): Primary 14C17, 14M15, 05E05
Published electronically: April 1, 2015
Corrigendum: Proc. Amer. Math. Soc (electronically published)
MathSciNet review: 3391029
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a formula for pushing forward the classes of Hall-Littlewood polynomials in Grassmann bundles, generalizing Gysin formulas for Schur $ S$- and $ P$-functions.

References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces 𝐺/𝑃, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
  • [2] Michel Brion, The push-forward and Todd class of flag bundles, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 45–50. MR 1481478
  • [3] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [4] William Fulton and Piotr Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998. Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 1639468
  • [5] P. Hall, The algebra of partitions, Proc. 4th Canadian Math. Congress, Banff (1959) 147-159.
  • [6] T. Józefiak, A. Lascoux, and P. Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 662–673 (Russian). MR 623355
  • [7] A. Lascoux, Calcul de Schur et extensions grassmanniennes des 𝜆-anneaux, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) Springer, Berlin, 1977, pp. 182–216. Lecture Notes in Math., Vol. 579 (French). MR 0480069
  • [8] D. E. Littlewood, On certain symmetric functions, Proc. London Math. Soc. (3) 11 (1961), 485–498. MR 0130308,
  • [9] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • [10] Piotr Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 413–454. MR 974411
  • [11] Piotr Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 125–177. MR 1481485
  • [12] I. Schur, Über die Darstellung der Symmetrischen und den Alterienden Gruppe durch Gebrochene Lineare Substitutionen, Journal für die reine u. angew. Math. 139, 1911, 155-250.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14C17, 14M15, 05E05

Retrieve articles in all journals with MSC (2010): 14C17, 14M15, 05E05

Additional Information

Piotr Pragacz
Affiliation: Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland

Keywords: Push-forward of a cycle, Grassmann bundle, flag bundle, Hall-Littlewood polynomial, Schur $P$-function
Received by editor(s): February 25, 2014
Received by editor(s) in revised form: August 19, 2014
Published electronically: April 1, 2015
Additional Notes: This work was supported by NCN grant 2014/13/B/ST1/00133
Dedicated: To Bill Fulton on his 75th birthday
Communicated by: Lev Borisov
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society