Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Asymptotic limits of operators similar to normal operators


Author: György Pál Gehér
Journal: Proc. Amer. Math. Soc. 143 (2015), 4823-4834
MSC (2010): Primary 47B40; Secondary 47A45, 47B15
DOI: https://doi.org/10.1090/proc/12632
Published electronically: April 2, 2015
MathSciNet review: 3391040
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sz.-Nagy's famous theorem states that a bounded operator $ T$ which acts on a complex Hilbert space $ \mathcal {H}$ is similar to a unitary operator if and only if $ T$ is invertible and both $ T$ and $ T^{-1}$ are power bounded. There is an equivalent reformulation of that result which considers the self-adjoint iterates of $ T$ and uses a Banach limit $ L$. In this paper first we present a generalization of the necessity part in Sz.-Nagy's result concerning operators that are similar to normal operators. In the second part we provide a characterization of all possible strong operator topology limits of the self-adjoint iterates of those contractions which are similar to unitary operators and act on a separable infinite-dimensional Hilbert space. This strengthens Sz.-Nagy's theorem for contractions.


References [Enhancements On Off] (What's this?)

  • [1] Nour-Eddine Benamara and Nikolai Nikolski, Resolvent tests for similarity to a normal operator, Proc. London Math. Soc. (3) 78 (1999), no. 3, 585-626. MR 1674839 (2000c:47006), https://doi.org/10.1112/S0024611599001756
  • [2] Hari Bercovici and László Kérchy, Spectral behaviour of $ C_{10}$-contractions, Operator theory live, Theta Ser. Adv. Math., vol. 12, Theta, Bucharest, 2010, pp. 17-33. MR 2731861 (2012c:47008)
  • [3] Gilles Cassier, Generalized Toeplitz operators, restrictions to invariant subspaces and similarity problems, J. Operator Theory 53 (2005), no. 1, 49-89. MR 2132688 (2006a:47008)
  • [4] John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [5] B. P. Duggal, On characterising contractions with $ C_{10}$ pure part, Integral Equations Operator Theory 27 (1997), no. 3, 314-323. MR 1433004 (98j:47016), https://doi.org/10.1007/BF01324731
  • [6] E. Durszt, Contractions as restricted shifts, Acta Sci. Math. (Szeged) 48 (1985), no. 1-4, 129-134. MR 810871 (87a:47015)
  • [7] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790. MR 0165362 (29 #2646)
  • [8] György Pál Gehér, Positive operators arising asymptotically from contractions, Acta Sci. Math. (Szeged) 79 (2013), no. 1-2, 273-287. MR 3100439
  • [9] György Pál Gehér, Characterization of Cesàro and $ L$-asymptotic limits of matrices, Linear Multilinear Algebra 63 (2015), no. 4, 788-805. MR 3291564, https://doi.org/10.1080/03081087.2014.899359
  • [10] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42 #5066)
  • [11] László Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), no. 1, 173-188. MR 982576 (90f:47050), https://doi.org/10.1512/iumj.1989.38.38008
  • [12] László Kérchy, Generalized Toeplitz operators, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 373-400. MR 1916586 (2003e:47040)
  • [13] Carlos S. Kubrusly, An introduction to models and decompositions in operator theory, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1464436 (98g:47004)
  • [14] C. S. Kubrusly and B. P. Duggal, Contractions with $ {\mathcal {C}}_{\cdot 0}$ direct summands, Adv. Math. Sci. Appl. 11 (2001), no. 2, 593-601. MR 1907458 (2003h:47002)
  • [15] C. S. Kubrusly, Contractions $ T$ for which $ A$ is a projection, Acta Sci. Math. (Szeged), 80 (3-4) (2014), 603-624).
  • [16] Stanislav Kupin, Linear resolvent growth test for similarity of a weak contraction to a normal operator, Ark. Mat. 39 (2001), no. 1, 95-119. MR 1821084 (2002b:47008), https://doi.org/10.1007/BF02388793
  • [17] S. Kupin, Operators similar to contractions and their similarity to a normal operator, Indiana Univ. Math. J. 52 (2003), no. 3, 753-768. MR 1986896 (2004d:47010), https://doi.org/10.1512/iumj.2003.52.2269
  • [18] A. Lebow, A power-bounded operator that is not polynomially bounded, Michigan Math. J. 15 (1968), 397-399. MR 0236753 (38 #5047)
  • [19] Salah Mecheri, A generalization of Fuglede-Putnam theorem, J. Pure Math. 21 (2004), 31-38. MR 2210557 (2006i:47039)
  • [20] Kazuyoshi Okubo, The unitary part of paranormal operators, Hokkaido Math. J. 6 (1977), no. 2, 273-275. MR 0458224 (56 #16427)
  • [21] Patryk Pagacz, On Wold-type decomposition, Linear Algebra Appl. 436 (2012), no. 9, 3065-3071. MR 2900695, https://doi.org/10.1016/j.laa.2011.09.001
  • [22] Patryk Pagacz, The Putnam-Fuglede property for paranormal and $ *$-paranormal operators, Opuscula Math. 33 (2013), no. 3, 565-574. MR 3046409, https://doi.org/10.7494/OpMath.2013.33.3.565
  • [23] Gilles Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), no. 2, 351-369. MR 1415321 (97f:47002), https://doi.org/10.1090/S0894-0347-97-00227-0
  • [24] Gilles Pisier, Similarity problems and completely bounded maps, Second, expanded edition, Includes the solution to ``The Halmos problem'', Lecture Notes in Mathematics, vol. 1618, Springer-Verlag, Berlin, 2001. MR 1818047 (2001m:47002)
  • [25] Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. MR 0112040 (22 #2898)
  • [26] Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49-128. MR 0361899 (50 #14341)
  • [27] Laurian Suciu and Nicolae Suciu, Asymptotic behaviours and generalized Toeplitz operators, J. Math. Anal. Appl. 349 (2009), no. 1, 280-290. MR 2455749 (2009m:47022), https://doi.org/10.1016/j.jmaa.2008.08.028
  • [28] Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010. MR 2760647 (2012b:47001)
  • [29] Béla de Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 152-157. MR 0022309 (9,191b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B40, 47A45, 47B15

Retrieve articles in all journals with MSC (2010): 47B40, 47A45, 47B15


Additional Information

György Pál Gehér
Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary – and – MTA-DE “Lendület” Functional Analysis Research Group, Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
Email: gehergy@math.u-szeged.hu

DOI: https://doi.org/10.1090/proc/12632
Keywords: Power bounded Hilbert space operators, similarity to normal operators, asymptotic behaviour
Received by editor(s): May 7, 2014
Received by editor(s) in revised form: August 25, 2014
Published electronically: April 2, 2015
Communicated by: Pamela B. Gorkin
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society