Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Dérivabilité ponctuelle d’une intégrale liée aux fonctions de Bernoulli
HTML articles powered by AMS MathViewer

by R. de la Bretèche and G. Tenenbaum PDF
Proc. Amer. Math. Soc. 143 (2015), 4791-4796 Request permission

Abstract:

Let $B (\vartheta )$ denote the first normalised Bernoulli function, and consider the series $f(\vartheta ):=\sum _{n\geqslant 1}B(n\vartheta )/n$. In a previous paper, we determined the set $E^*$ of those real numbers $\vartheta$ at which $f(\vartheta )$ converges. Let $B_2(\vartheta )$ designate the second Bernoulli function and let $\langle t\rangle$ denote the fractional part of the real number $t$. Put $F(\vartheta ):=\sum _{n\geqslant 1}{B_2(n\vartheta )/ 2n^2}=\pi ^2/72+\int _0^\vartheta f(t)\mathrm {d} t.$ It has been shown by Báez-Duarte, Balazard, Landreau and Saias (2005) that $F(\vartheta )$ and $\int _0^\infty \langle t\rangle \langle \vartheta t\rangle \mathrm {d} t/t^2$ have the same differentiability points. Moreover, using delicate functional equations, Balazard and Martin recently proved that the corresponding set is precisely $E:=E^*\smallsetminus \mathbb {Q}$ and that $F’(\vartheta )=f(\vartheta )$ whenever $\vartheta \in E$. We provide a short, direct proof of this last result, based on standard results from Diophantine approximation theory and uniform distribution theory.
References
Similar Articles
Additional Information
  • R. de la Bretèche
  • Affiliation: Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot-Paris 7, Sorbonne Paris Cité, UMR 7586, Case 7012, F-75013 Paris, France
  • Email: regis.delabreteche@imj-prg.fr
  • G. Tenenbaum
  • Affiliation: Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
  • ORCID: 0000-0002-0478-3693
  • Email: gerald.tenenbaum@univ-lorraine.fr
  • Received by editor(s): December 11, 2013
  • Received by editor(s) in revised form: January 7, 2014, January 9, 2014, January 23, 2014, and July 23, 2014
  • Published electronically: April 2, 2015
  • Communicated by: Matthew A. Papanikolas
  • © Copyright 2015 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 143 (2015), 4791-4796
  • MSC (2010): Primary 26A24, 26A27; Secondary 11J70, 11J71, 11K06, 11L07, 11M26
  • DOI: https://doi.org/10.1090/S0002-9939-2015-12650-0
  • MathSciNet review: 3391036