Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Dérivabilité ponctuelle d'une intégrale liée aux fonctions de Bernoulli


Authors: R. de la Bretèche and G. Tenenbaum
Journal: Proc. Amer. Math. Soc. 143 (2015), 4791-4796
MSC (2010): Primary 26A24, 26A27; Secondary 11J70, 11J71, 11K06, 11L07, 11M26
DOI: https://doi.org/10.1090/S0002-9939-2015-12650-0
Published electronically: April 2, 2015
MathSciNet review: 3391036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B (\vartheta )$ denote the first normalised Bernoulli function, and consider the series $ f(\vartheta ):=\sum _{n\geqslant 1}B(n\vartheta )/n$. In a previous paper, we determined the set $ E^*$ of those real numbers $ \vartheta $ at which $ f(\vartheta )$ converges. Let $ B_2(\vartheta )$ designate the second Bernoulli function and let $ \langle t\rangle $ denote the fractional part of the real number $ t$. Put $ F(\vartheta ):=\sum _{n\geqslant 1}{B_2(n\vartheta )/ 2n^2}=\pi ^2/72+\int _0^\vartheta f(t)\textup {d} t.$ It has been shown by Báez-Duarte, Balazard, Landreau and Saias (2005) that $ F(\vartheta )$ and $ \int _0^\infty \langle t\rangle \langle \vartheta t\rangle \textup {d} t/t^2$ have the same differentiability points. Moreover, using delicate functional equations, Balazard and Martin recently proved that the corresponding set is precisely $ E:=E^*\setminus \mathbb{Q}$ and that $ F'(\vartheta )=f(\vartheta )$ whenever $ \vartheta \in E$. We provide a short, direct proof of this last result, based on standard results from Diophantine approximation theory and uniform distribution theory.


References [Enhancements On Off] (What's this?)

  • [1] Luis Báez-Duarte, Michel Balazard, Bernard Landreau, and Eric Saias, Étude de l'autocorrélation multiplicative de la fonction `partie fractionnaire', Ramanujan J. 9 (2005), no. 1-2, 215-240 (French, with English summary). MR 2166387 (2006i:11096), https://doi.org/10.1007/s11139-005-0834-4
  • [2] M. Balazard et B. Martin, Sur l'autocorrélation multiplicative de la fonction «partie fractionnaire» et une fonction définie par J. R. Wilton, prépublication, arXiv:1305.4395v1.
  • [3] R. de la Bretèche and G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques, J. Anal. Math. 92 (2004), 1-79 (French). MR 2072741 (2005i:11103), https://doi.org/10.1007/BF02787756
  • [4] M. E. Munroe, Introduction to measure and integration, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1953. MR 0053186 (14,734a)
  • [5] J. Rivat and G. Tenenbaum, Constantes d'Erdős-Turán, Ramanujan J. 9 (2005), no. 1-2, 111-121 (French, with English and French summaries). MR 2166382 (2006g:11158), https://doi.org/10.1007/s11139-005-0829-1
  • [6] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)
  • [7] Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. MR 0167578 (29 #4850)
  • [8] E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition. MR 3155290
  • [9] D. N. Sarkhel, The pointwise characterization of derivatives of integrals, Proc. Amer. Math. Soc. 63 (1977), no. 1, 125-128. MR 0437703 (55 #10627)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26A24, 26A27, 11J70, 11J71, 11K06, 11L07, 11M26

Retrieve articles in all journals with MSC (2010): 26A24, 26A27, 11J70, 11J71, 11K06, 11L07, 11M26


Additional Information

R. de la Bretèche
Affiliation: Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot-Paris 7, Sorbonne Paris Cité, UMR 7586, Case 7012, F-75013 Paris, France
Email: regis.delabreteche@imj-prg.fr

G. Tenenbaum
Affiliation: Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
Email: gerald.tenenbaum@univ-lorraine.fr

DOI: https://doi.org/10.1090/S0002-9939-2015-12650-0
Keywords: Bernoulli functions, differentiability, Diophantine approximation, continued fractions, distribution modulo one, Erd\H{o}s-Tur\'an inequality, Davenport identities
Received by editor(s): December 11, 2013
Received by editor(s) in revised form: January 7, 2014, January 9, 2014, January 23, 2014, and July 23, 2014
Published electronically: April 2, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society