Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On the radius in Cayley-Dickson algebras


Authors: Moshe Goldberg and Thomas J. Laffey
Journal: Proc. Amer. Math. Soc. 143 (2015), 4733-4744
MSC (2010): Primary 16P10, 17A05, 17A35, 17D05, 39B22
DOI: https://doi.org/10.1090/proc/12826
Published electronically: July 20, 2015
MathSciNet review: 3391032
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first two sections of this paper we provide a brief account of the Cayley-Dickson algebras and prove that the radius on these algebras is given by the Euclidean norm. With this observation we resort to three related topics: a variant of the Gelfand formula, stability of subnorms, and the functional power equation.


References [Enhancements On Off] (What's this?)

  • [A] A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593. MR 0027750 (10,349g)
  • [B] Ralph P. Boas Jr., A primer of real functions, The Carus Mathematical Monographs, No. 13, Published by The Mathematical Association of America; distributed by John Wiley and Sons, Inc.; New York, 1960. MR 0118779 (22 #9550)
  • [D] L. E. Dickson, On quaternions and their generalization and the history of the eight square theorem, Ann. of Math. (2) 20 (1919), no. 3, 155-171. MR 1502549, https://doi.org/10.2307/1967865
  • [G1] Moshe Goldberg, Minimal polynomials and radii of elements in finite-dimensional power-associative algebras, Trans. Amer. Math. Soc. 359 (2007), no. 8, 4055-4072. MR 2302523 (2008d:17001), https://doi.org/10.1090/S0002-9947-06-04296-6
  • [G2] Moshe Goldberg, Radii and subnorms on finite-dimensional power-associative algebras, Linear Multilinear Algebra 55 (2007), no. 5, 405-415. MR 2363542 (2008j:17001), https://doi.org/10.1080/03081080701254219
  • [G3] Moshe Goldberg, Stable subnorms on finite-dimensional power-associative algebras, Electron. J. Linear Algebra 17 (2008), 359-375. MR 2430861 (2009f:17002)
  • [GGL] Moshe Goldberg, Robert Guralnick, and W. A. J. Luxemburg, Stable subnorms II, Linear Multilinear Algebra 51 (2003), no. 2, 209-219. MR 1976865 (2004c:17001), https://doi.org/10.1080/0308108031000078920
  • [GL1] Moshe Goldberg and Eliahu Levy, The power equation, Electron. J. Linear Algebra 22 (2011), 810-821. MR 2836786 (2012j:17001)
  • [GL2] Moshe Goldberg and W. A. J. Luxemburg, Stable subnorms, Linear Algebra Appl. 307 (2000), no. 1-3, 89-101. MR 1741918 (2001m:15065), https://doi.org/10.1016/S0024-3795(00)00011-2
  • [GL3] Moshe Goldberg and W. A. J. Luxemburg, Discontinuous subnorms, Linear and Multilinear Algebra 49 (2001), no. 1, 1-24. MR 1888109 (2003a:15026), https://doi.org/10.1080/03081080108818683
  • [H] Georg Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: $ f(x+y)=f(x)+f(y)$, Math. Ann. 60 (1905), no. 3, 459-462 (German). MR 1511317, https://doi.org/10.1007/BF01457624
  • [HLP] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
  • [HR] Hans Hahn and Arthur Rosenthal, Set Functions, The University of New Mexico Press, Albuquerque, N. M., 1948. MR 0024504 (9,504e)
  • [L] Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228 (2003a:47001)
  • [R] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)
  • [W1] http://en.wikipedia.org/wiki/Cayley-Dickson_construction
  • [W2] http://en.wikipedia.org/wiki/Sedenions

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16P10, 17A05, 17A35, 17D05, 39B22

Retrieve articles in all journals with MSC (2010): 16P10, 17A05, 17A35, 17D05, 39B22


Additional Information

Moshe Goldberg
Affiliation: Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
Email: mg@technion.ac.il

Thomas J. Laffey
Affiliation: School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland
Email: thomas.laffey@ucd.ie

DOI: https://doi.org/10.1090/proc/12826
Keywords: Cayley--Dickson algebras, power-associative algebras, radius of an element in a finite-dimensional power-associative algebra, subnorms, the Gelfand formula, stability of subnorms, the power equation
Received by editor(s): April 3, 2015
Received by editor(s) in revised form: April 20, 2015
Published electronically: July 20, 2015
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society