Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some congruences on truncated hypergeometric series


Author: Bing He
Journal: Proc. Amer. Math. Soc. 143 (2015), 5173-5180
MSC (2010): Primary 11A07; Secondary 33C20, 33C05
DOI: https://doi.org/10.1090/proc/12695
Published electronically: August 12, 2015
MathSciNet review: 3411135
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish some congruences on truncated hypergeometric series. In particular, we confirm some congruences conjectured by Z.-W. Sun and two conjectures of L. van Hamme.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [2] S. Chowla, B. Dwork, and Ronald Evans, On the mod $ p^2$ determination of $ \left ({(p-1)/2\atop (p-1)/4}\right )$, J. Number Theory 24 (1986), no. 2, 188-196. MR 863654 (88a:11130), https://doi.org/10.1016/0022-314X(86)90102-2
  • [3] Ira M. Gessel, Finding identities with the WZ method, J. Symbolic Comput. 20 (1995), no. 5-6, 537-566. MR 1395413 (97j:05010), https://doi.org/10.1006/jsco.1995.1064
  • [4] Andrew Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics (Burnaby, BC, 1995) CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253-276. MR 1483922 (99h:11016)
  • [5] Victor J. W. Guo and Jiang Zeng, Some $ q$-analogues of supercongruences of Rodriguez-Villegas, J. Number Theory 145 (2014), 301-316. MR 3253305, https://doi.org/10.1016/j.jnt.2014.06.002
  • [6] Zhi-Guo Liu, On the $ q$-partial differential equations and $ q$-series, The legacy of Srinivasa Ramanujan, Ramanujan Math. Soc. Lect. Notes Ser., vol. 20, Ramanujan Math. Soc., Mysore, India, 2013, pp. 213-250. MR 3221313
  • [7] Ling Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), no. 2, 405-418. MR 2782677 (2012e:33023), https://doi.org/10.2140/pjm.2011.249.405
  • [8] Eric Mortenson, A $ p$-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4321-4328. MR 2431046 (2010g:11203), https://doi.org/10.1090/S0002-9939-08-09389-1
  • [9] Zhi-Hong Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011), no. 6, 1915-1929. MR 2775368 (2012c:11007), https://doi.org/10.1090/S0002-9939-2010-10566-X
  • [10] Zhi-Hong Sun, Congruences concerning Legendre polynomials II, J. Number Theory 133 (2013), no. 6, 1950-1976. MR 3027947, https://doi.org/10.1016/j.jnt.2012.11.004
  • [11] Zhi-Wei Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011), no. 11, 2219-2238. MR 2825123, https://doi.org/10.1016/j.jnt.2011.04.004
  • [12] Z.-W. Sun, Open Conjectures on Congruences, arxiv.org/abs/0911.5665
  • [13] Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), no. 12, 2509-2535. MR 2861289, https://doi.org/10.1007/s11425-011-4302-x
  • [14] L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, $ p$-adic functional analysis (Nijmegen, 1996) Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 223-236. MR 1459212 (98k:33011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11A07, 33C20, 33C05

Retrieve articles in all journals with MSC (2010): 11A07, 33C20, 33C05


Additional Information

Bing He
Affiliation: Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
Address at time of publication: Department of Applied Mathematics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
Email: yuhe001@foxmail.com

DOI: https://doi.org/10.1090/proc/12695
Keywords: Hypergeometric series, truncated hypergeometric series, congruences
Received by editor(s): August 1, 2014
Received by editor(s) in revised form: October 23, 2014
Published electronically: August 12, 2015
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society