Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trefoil plumbing


Authors: Sebastian Baader and Pierre Dehornoy
Journal: Proc. Amer. Math. Soc. 144 (2016), 387-397
MSC (2010): Primary 57M25
DOI: https://doi.org/10.1090/proc/12561
Published electronically: September 11, 2015
MathSciNet review: 3415605
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a criterion for an open book to contain an $ n$-times iterated Hopf plumbing summand. As an application, we show that fibre surfaces of positive braid knots admit a trefoil plumbing structure.


References [Enhancements On Off] (What's this?)

  • [1] D. Buck, K. Ishihara, M. Rathbun, and K. Shimokawa, Band surgeries and crossing changes between fibered links, arxiv:1304.6781.
  • [2] P. Dehornoy, On the zeroes of the Alexander polynomial of a Lorenz knot, arxiv:1110.4178.
  • [3] J. Etnyre and Y. Li, The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere, arxiv:1305.5928.
  • [4] John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97-108. MR 896009 (88k:57006), https://doi.org/10.2307/2000780
  • [5] Emmanuel Giroux and Noah Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97-114 (electronic). MR 2207791 (2006k:57046), https://doi.org/10.2140/gt.2006.10.97
  • [6] Eriko Hironaka, Salem-Boyd sequences and Hopf plumbing, Osaka J. Math. 43 (2006), no. 3, 497-516. MR 2283407 (2008c:57023)
  • [7] Ko Honda, William H. Kazez, and Gordana Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007), no. 2, 427-449. MR 2318562 (2008e:57028), https://doi.org/10.1007/s00222-007-0051-4
  • [8] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288 (58 #24236)
  • [9] Lee Rudolph, Quasipositive plumbing (constructions of quasipositive knots and links. V), Proc. Amer. Math. Soc. 126 (1998), no. 1, 257-267. MR 1452826 (98h:57024), https://doi.org/10.1090/S0002-9939-98-04407-4
  • [10] John R. Stallings, Constructions of fibred knots and links, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55-60. MR 520522 (80e:57004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M25

Retrieve articles in all journals with MSC (2010): 57M25


Additional Information

Sebastian Baader
Affiliation: Department of Mathematics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Email: sebastian.baader@math.unibe.ch

Pierre Dehornoy
Affiliation: Department of Mathematics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Address at time of publication: Institut Fourier-UMR 5582, Université Grenoble Alpes-CNRS, 38000 Grenoble, France
Email: pierre.dehornoy@ujf-grenoble.fr

DOI: https://doi.org/10.1090/proc/12561
Received by editor(s): January 24, 2014
Received by editor(s) in revised form: June 6, 2014
Published electronically: September 11, 2015
Additional Notes: The second author was supported by SNF project no. 137548: Knots and Surfaces
Communicated by: Martin Scharlemann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society