Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Calderón problem for the $ p$-Laplacian: First order derivative of conductivity on the boundary


Author: Tommi Brander
Journal: Proc. Amer. Math. Soc. 144 (2016), 177-189
MSC (2010): Primary 35R30, 35J92
DOI: https://doi.org/10.1090/proc/12681
Published electronically: July 24, 2015
MathSciNet review: 3415587
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We recover the gradient of a scalar conductivity defined on a smooth bounded open set in $ \mathbb{R}^d$ from the Dirichlet to Neumann map arising from the $ p$-Laplace equation. For any boundary point we recover the gradient using Dirichlet data supported on an arbitrarily small neighbourhood of the boundary point. We use a Rellich-type identity in the proof. Our results are new when $ p \neq 2$. In the $ p=2$ case boundary determination plays a role in several methods for recovering the conductivity in the interior.


References [Enhancements On Off] (What's this?)

  • [1] Giovanni Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations 84 (1990), no. 2, 252-272. MR 1047569 (91e:35210), https://doi.org/10.1016/0022-0396(90)90078-4
  • [2] Giovanni Alessandrini and Romina Gaburro, The local Calderòn problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations 34 (2009), no. 7-9, 918-936. MR 2560305 (2010h:35409), https://doi.org/10.1080/03605300903017397
  • [3] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math. 68 (2008), no. 6, 1557-1573. MR 2424952 (2009h:35439), https://doi.org/10.1137/070686408
  • [4] Gunnar Aronsson, On $ p$-harmonic functions, convex duality and an asymptotic formula for injection mould filling, European J. Appl. Math. 7 (1996), no. 5, 417-437. MR 1419641 (97i:76007), https://doi.org/10.1017/S0956792500002473
  • [5] G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations 131 (1996), no. 2, 304-335. MR 1419017 (97i:35068), https://doi.org/10.1006/jdeq.1996.0166
  • [6] Gunnar Aronsson and Ulf Janfalk, On Hele-Shaw flow of power-law fluids, European J. Appl. Math. 3 (1992), no. 4, 343-366. MR 1196816 (94d:76001), https://doi.org/10.1017/S0956792500000905
  • [7] Guillaume Bal, Cauchy problem for ultrasound-modulated EIT, Anal. PDE 6 (2013), no. 4, 751-775. MR 3092728, https://doi.org/10.2140/apde.2013.6.751
  • [8] Guillaume Bal and John C. Schotland, Inverse scattering and acousto-optic imaging, Phys. Rev. Lett. 104 (2010), no. 4.
  • [9] Liliana Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), no. 6, R99-R136. MR 1955896, https://doi.org/10.1088/0266-5611/18/6/201
  • [10] Tommi Brander, Manas Kar, and Mikko Salo, Enclosure method for the $ P$-Laplace equation, Inverse Problems 31 (2015), no. 4, 045001, 16. MR 3320025, https://doi.org/10.1088/0266-5611/31/4/045001
  • [11] B. H. Brown, D. C. Barber, and A. D. Seagar, Applied potential tomography: possible clinical applications, Clin. Phys. Physiol. Meas. 6 (1985), no. 2, 109.
  • [12] R. M. Brown, Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result, J. Inverse Ill-Posed Probl. 9 (2001), no. 6, 567-574. MR 1881563 (2003a:35196), https://doi.org/10.1515/jiip.2001.9.6.567
  • [13] Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65-73. MR 590275 (81k:35160)
  • [14] A.-P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, RI, 1961, pp. 33-49. MR 0143037 (26 #603)
  • [15] Luigi D'Onofrio and Tadeusz Iwaniec, Notes on $ p$-harmonic analysis, The $ p$-harmonic equation and recent advances in analysis, Contemp. Math., vol. 370, Amer. Math. Soc., Providence, RI, 2005, pp. 25-49. MR 2126700 (2006d:35070), https://doi.org/10.1090/conm/370/06828
  • [16] Andoni García and Guo Zhang, Reconstruction from boundary measurements for less regular conductivities, arXiv (2012), With an appendix by R. Brown and the authors.
  • [17] Bastian Gebauer and Otmar Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math. 69 (2008), no. 2, 565-576. MR 2465856 (2009j:35381), https://doi.org/10.1137/080715123
  • [18] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [19] Boaz Haberman and Daniel Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J. 162 (2013), no. 3, 496-516. MR 3024091, https://doi.org/10.1215/00127094-2019591
  • [20] Piotr Hajłasz, Pekka Koskela, and Heli Tuominen, Measure density and extendability of Sobolev functions, Rev. Mat. Iberoam. 24 (2008), no. 2, 645-669. MR 2459208 (2009i:46065), https://doi.org/10.4171/RMI/551
  • [21] Daniel Hauer, The $ p$-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems, (2014), Preprint, retrieved 18.9.2014 from www.maths.usyd.edu.au/u/pubs/publist/preprints/2014/hauer-9.html.
  • [22] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810 (94e:31003)
  • [23] Nicholas Hoell, Amir Moradifam, and Adrian Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM J. Math. Anal. 46 (2014), no. 3, 1820-1842. MR 3206987, https://doi.org/10.1137/130911524
  • [24] M. Joy, G. Scott, and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magnetic Resonance Imaging 7 (1989), no. 1, 89-94.
  • [25] Hyeonbae Kang and Kihyun Yun, Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal. 34 (2002), no. 3, 719-735 (electronic). MR 1970890 (2004c:35416), https://doi.org/10.1137/S0036141001395042
  • [26] Kimmo Karhunen, Electrical resistance tomography imaging of concrete, Ph.D. thesis, University of Eastern Finland, 2013.
  • [27] Sungwhan Kim, Ohin Kwon, Jin Keun Seo, and Jeong-Rock Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal. 34 (2002), no. 3, 511-526 (electronic). MR 1970881 (2004f:35185), https://doi.org/10.1137/S0036141001391354
  • [28] Robert Kohn and Michael Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), no. 3, 289-298. MR 739921 (85f:80008), https://doi.org/10.1002/cpa.3160370302
  • [29] Arjan Kuijper, p-Laplacian driven image processing, ICIP 2007. IEEE International Conference on Image Processing, vol. 5, IEEE, 2007, pp. V-257.
  • [30] Olga A. Ladyzhenskaya and Nina N. Uraltseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627 (39 #5941)
  • [31] Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203-1219. MR 969499 (90a:35098), https://doi.org/10.1016/0362-546X(88)90053-3
  • [32] Tony Liimatainen and Mikko Salo, $ n$-harmonic coordinates and the regularity of conformal mappings, Math. Res. Lett. 21 (2014), no. 2, 341-361. MR 3247061, https://doi.org/10.4310/MRL.2014.v21.n2.a11
  • [33] Peter Lindqvist, Notes on the $ p$-Laplace equation, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 102, University of Jyväskylä, Jyväskylä, 2006. MR 2242021 (2007h:35102)
  • [34] Tadeusz Iwaniec and Juan J. Manfredi, Regularity of $ p$-harmonic functions on the plane, Rev. Mat. Iberoamericana 5 (1989), no. 1-2, 1-19. MR 1057335 (91i:35071), https://doi.org/10.4171/RMI/82
  • [35] Adrian Nachman, Alexandru Tamasan, and Alexandre Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems 25 (2009), no. 3, 035014, 16. MR 2480184 (2010g:35340), https://doi.org/10.1088/0266-5611/25/3/035014
  • [36] Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71-96. MR 1370758 (96k:35189), https://doi.org/10.2307/2118653
  • [37] G. Nakamura, S. Siltanen, K. Tanuma, and S. Wang, Numerical recovery of conductivity at the boundary from the localized Dirichlet to Neumann map, Computing 75 (2005), no. 2-3, 197-213. MR 2163666 (2006d:35298), https://doi.org/10.1007/s00607-004-0095-x
  • [38] Gen Nakamura and Kazumi Tanuma, Formulas for reconstructing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map, Recent development in theories & numerics, World Sci. Publ., River Edge, NJ, 2003, pp. 192-201. MR 2088202, https://doi.org/10.1142/9789812704924_0017
  • [39] Johann Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, S.-B. Akad. Wiss. Wien 122 (1913), 1295-1438.
  • [40] Franz Rellich, Darstellung der Eigenwerte von $ \Delta u+\lambda u=0$ durch ein Randintegral, Math. Z. 46 (1940), 635-636 (German). MR 0002456 (2,56d)
  • [41] Frédéric Riesz, Sur la convergence en moyenne, I, Acta Sci. Math (Szeged) 4 (1928-1929), 58-64.
  • [42] Frédéric Riesz, Sur la convergence en moyenne, II, Acta Sci. Math (Szeged) 4 (1928-1929), 182-185.
  • [43] Mikko Salo and Xiao Zhong, An inverse problem for the $ p$-Laplacian: boundary determination, SIAM J. Math. Anal. 44 (2012), no. 4, 2474-2495. MR 3023384, https://doi.org/10.1137/110838224
  • [44] G. C. Scott, M. L. G. Joy, R .L. Armstrong, and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Transactions on Medical Imaging 10 (1991), no. 3, 362-374.
  • [45] Samuli Siltanen and Janne P. Tamminen, Reconstructing conductivities with boundary corrected D-bar method, J. Inverse Ill-Posed Probl. 22 (2014), no. 6, 847-870. MR 3284728, https://doi.org/10.1515/jip-2013-0042
  • [46] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 0290095 (44 #7280)
  • [47] John Sylvester and Gunther Uhlmann, Inverse boundary value problems at the boundary--continuous dependence, Comm. Pure Appl. Math. 41 (1988), no. 2, 197-219. MR 924684 (89f:35213), https://doi.org/10.1002/cpa.3160410205
  • [48] Gunther Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems 25 (2009), no. 12, 123011.
  • [49] Thomas H. Wolff, Gap series constructions for the $ p$-Laplacian, J. Anal. Math. 102 (2007), 371-394. Paper completed by John Garnett and Jang-Mei Wu. MR 2346563 (2008k:35182), https://doi.org/10.1007/s11854-007-0026-9

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35R30, 35J92

Retrieve articles in all journals with MSC (2010): 35R30, 35J92


Additional Information

Tommi Brander
Affiliation: Department of Mathematics and Statistics, P.O. Box 35 (MaD) FI-40014 University of Jyväskylä, Finland
Email: tommi.o.brander@jyu.fi

DOI: https://doi.org/10.1090/proc/12681
Keywords: Calder\'on's problem, inverse problems, $p$-Laplace equation, boundary determination
Received by editor(s): March 4, 2014
Received by editor(s) in revised form: November 26, 2014
Published electronically: July 24, 2015
Communicated by: Joachim Krieger
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society