Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

0-1 sequences of the Thue-Morse type and Sarnak's conjecture


Authors: El Houcein El Abdalaoui, Stanisław Kasjan and Mariusz Lemańczyk
Journal: Proc. Amer. Math. Soc. 144 (2016), 161-176
MSC (2010): Primary 37B05; Secondary 47A40
DOI: https://doi.org/10.1090/proc/12683
Published electronically: June 23, 2015
MathSciNet review: 3415586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the images via $ z\mapsto z^m$ of the continuous part of the spectral measures of the dynamical systems generated by the 0-1 sequences of the Thue-Morse type are pairwise mutually singular for different odd numbers $ m\in \mathbb{N}$. Sarnak's conjecture on orthogonality with the Möbius function is proved to hold for such dynamical systems. A step toward the proof of this result is the observation that in the class of uniquely ergodic models of a fixed coalescent automorphism, the conjecture is stable under continuous extensions. In particular, Sarnak's conjecture holds for all dynamical systems given by regular Toeplitz sequences. A non-regular Toeplitz sequence which is not orthogonal to the Möbius function is constructed.


References [Enhancements On Off] (What's this?)

  • [1] El Houcein El Abdalaoui, Mariusz Lemańczyk, and Thierry de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal. 266 (2014), no. 1, 284-317. MR 3121731, https://doi.org/10.1016/j.jfa.2013.09.005
  • [2] J. Bourgain, Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat, J. Anal. Math. 119 (2013), 147-163. MR 3043150, https://doi.org/10.1007/s11854-013-0005-2
  • [3] J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math. 120 (2013), 105-130. MR 3095150, https://doi.org/10.1007/s11854-013-0016-z
  • [4] J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, pp. 67-83. MR 2986954, https://doi.org/10.1007/978-1-4614-4075-8_5
  • [5] Cécile Dartyge and Gérald Tenenbaum, Sommes des chiffres de multiples d'entiers, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 7, 2423-2474 (French, with English and French summaries). MR 2207389 (2007b:11120)
  • [6] Tomasz Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7-37. MR 2180227 (2006f:37009), https://doi.org/10.1090/conm/385/07188
  • [7] T. Downarowicz and S. Kasjan, Odometers and Toeplitz subshifts revisited in the context of Sarnak's conjecture, (to appear), arXiv: 1502.02307v1.
  • [8] Michael Drmota, Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte Carlo methods, Radon Ser. Comput. Appl. Math., vol. 15, De Gruyter, Berlin, 2014, pp. 87-104. MR 3287361
  • [9] Mariano Garcia and Gustav A. Hedlund, The structure of minimal sets, Bull. Amer. Math. Soc. 54 (1948), 954-964. MR 0026764 (10,199b)
  • [10] Eli Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR 1958753 (2004c:37011)
  • [11] Ben Green, On (not) computing the Möbius function using bounded depth circuits, Combin. Probab. Comput. 21 (2012), no. 6, 942-951. MR 2981162, https://doi.org/10.1017/S0963548312000284
  • [12] Ben Green and Terence Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), no. 2, 541-566. MR 2877066, https://doi.org/10.4007/annals.2012.175.2.3
  • [13] Mélanie Guenais, Morse cocycles and simple Lebesgue spectrum, Ergodic Theory Dynam. Systems 19 (1999), no. 2, 437-446. MR 1685402 (2000g:28037), https://doi.org/10.1017/S0143385799126579
  • [14] Frank Hahn and William Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179-190. MR 0230877 (37 #6435)
  • [15] K.-H. Indlekofer and I. Kátai, Investigations in the theory of $ q$-additive and $ q$-multiplicative functions. I, Acta Math. Hungar. 91 (2001), no. 1-2, 53-78. MR 1912360 (2003d:11013), https://doi.org/10.1023/A:1010630810766
  • [16] Konrad Jacobs and Michael Keane, $ 0-1$-sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 123-131. MR 0255766 (41 #426)
  • [17] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), no. 1-2, 223-225. MR 836415 (87j:11072), https://doi.org/10.1007/BF01949145
  • [18] Anatole Katok and Jean-Paul Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 649-743. MR 2186251 (2006k:37002), https://doi.org/10.1016/S1874-575X(06)80036-6
  • [19] M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 335-353. MR 0239047 (39 #406)
  • [20] J. Kułaga-Przymus and M. Lemańczyk, The Möbius function and continuous $ \mathbb{T}$-extensions of rotations, preprint, arXiv: 1310.2546v2.
  • [21] Jan Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 3-4, 105-114 (English, with Russian summary). MR 638749 (83g:28033)
  • [22] Mariusz Lemańczyk, Toeplitz $ Z_2$-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 1, 1-43 (English, with French summary). MR 937955 (90b:28020)
  • [23] Y. Liu and P. Sarnak, The Möbius function and distal flows, arXiv:1303.4957
  • [24] Christian Mauduit and Joël Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2) 171 (2010), no. 3, 1591-1646 (French, with English and French summaries). MR 2680394 (2011j:11137), https://doi.org/10.4007/annals.2010.171.1591
  • [25] C. Mauduit and J. Rivat, Prime numbers along Rudin-Shapiro sequences (2013), http://iml.univ-mrs.fr/~rivat/preprints/PNT-RS.pdf.
  • [26] Bruno Martin, Christian Mauduit, and Joël Rivat, Théoréme des nombres premiers pour les fonctions digitales, Acta Arith. 165 (2014), no. 1, 11-45 (French). MR 3263939
  • [27] M. G. Nadkarni, Spectral theory of dynamical systems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1998. MR 1719722 (2001d:37001)
  • [28] D. Newton, Coalescence and spectrum of automorphisms of a Lebesgue space, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 117-122. MR 0289748 (44 #6936)
  • [29] William Parry, Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819-828. MR 0284567 (44 #1792)
  • [30] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR 1970385 (2004c:37005)
  • [31] Martine Queffélec, Substitution dynamical systems--spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156 (89g:54094)
  • [32] Marina Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), no. 3, 597-614. MR 657240 (84e:58062), https://doi.org/10.2307/2007014
  • [33] P. Sarnak, Three lectures on Möbius function, randomness and dynamics, publications.ias.edu/sarnak/.
  • [34] T. Tao, http://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture/
  • [35] T. Tao, http://mathoverflow.net/questions/97261/mobius-randomness-of-the-rudin-shapiro-sequence
  • [36] W. A. Veech, Möbius Orthogonality for Generalized Morse-Kakutani Flows, preprint.
  • [37] Susan Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 95-107. MR 756807 (86k:54062), https://doi.org/10.1007/BF00534085

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B05, 47A40

Retrieve articles in all journals with MSC (2010): 37B05, 47A40


Additional Information

El Houcein El Abdalaoui
Affiliation: Laboratoire de Mathématiques Raphaël Salem, Normandie Université, Université de Rouen, CNRS, Avenue de l’Université, 76801 Saint Étienne du Rouvray, France
Email: elhoucein.elabdalaoui@univ-rouen.fr

Stanisław Kasjan
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 12/18 Chopin Street, 87-100 Toruń, Poland
Email: skasjan@mat.umk.pl

Mariusz Lemańczyk
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 12/18 Chopin Street, 87-100 Toruń, Poland
Email: mlem@mat.umk.pl

DOI: https://doi.org/10.1090/proc/12683
Received by editor(s): September 5, 2014
Received by editor(s) in revised form: November 25, 2014
Published electronically: June 23, 2015
Additional Notes: The third author’s research was supported by Narodowe Centrum Nauki grant DEC-2011/03/B/ST1/00407.
Communicated by: Nimish Shah
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society