Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tensor product surfaces and linear syzygies


Authors: Eliana Duarte and Hal Schenck
Journal: Proc. Amer. Math. Soc. 144 (2016), 65-72
MSC (2010): Primary 14M25; Secondary 14F17
DOI: https://doi.org/10.1090/proc/12703
Published electronically: June 9, 2015
MathSciNet review: 3415577
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ U \subseteq H^0({\mathcal {O}_{\mathbb{P}^1 \times \mathbb{P}^1}}(a,b))$ be a basepoint free four-dimensional vector space, with $ a,b \ge 2$. The sections corresponding to $ U$ determine a regular map $ \phi _U: {\mathbb{P}^1 \times \mathbb{P}^1} \longrightarrow \mathbb{P}^3$. We show that there can be at most one linear syzygy on the associated bigraded ideal $ I_U \subseteq k[s,t;u,v]$. Existence of a linear syzygy, coupled with the assumption that $ U$ is basepoint free, implies the existence of an additional ``special pair'' of minimal first syzygies. Using results of Botbol, we show that these three syzygies are sufficient to determine the implicit equation of $ \phi _U(\mathbb{P}^1 \times \mathbb{P}^1)$, and that $ \mathrm {Sing}(\phi _U(\mathbb{P}^1 \times \mathbb{P}^1))$ contains a line.


References [Enhancements On Off] (What's this?)

  • [1] Nicolás Botbol, The implicit equation of a multigraded hypersurface, J. Algebra 348 (2011), 381-401. MR 2852248 (2012m:14094), https://doi.org/10.1016/j.jalgebra.2011.09.019
  • [2] Nicolás Botbol, Alicia Dickenstein, and Marc Dohm, Matrix representations for toric parametrizations, Comput. Aided Geom. Design 26 (2009), no. 7, 757-771. MR 2569833 (2010j:65023), https://doi.org/10.1016/j.cagd.2009.03.005
  • [3] Laurent Busé and Jean-Pierre Jouanolou, On the closed image of a rational map and the implicitization problem, J. Algebra 265 (2003), no. 1, 312-357. MR 1984914 (2004e:14024), https://doi.org/10.1016/S0021-8693(03)00181-9
  • [4] Laurent Busé and Marc Chardin, Implicitizing rational hypersurfaces using approximation complexes, J. Symbolic Comput. 40 (2005), no. 4-5, 1150-1168. MR 2172855 (2006g:14097), https://doi.org/10.1016/j.jsc.2004.04.005
  • [5] Marc Chardin, Implicitization using approximation complexes, Algebraic geometry and geometric modeling, Math. Vis., Springer, Berlin, 2006, pp. 23-35. MR 2279841 (2007j:14097), https://doi.org/10.1007/978-3-540-33275-6_2
  • [6] David A. Cox, The moving curve ideal and the Rees algebra, Theoret. Comput. Sci. 392 (2008), no. 1-3, 23-36. MR 2394983 (2009a:13003), https://doi.org/10.1016/j.tcs.2007.10.012
  • [7] David Cox, Curves, surfaces, and syzygies, Topics in algebraic geometry and geometric modeling, Contemp. Math., vol. 334, Amer. Math. Soc., Providence, RI, 2003, pp. 131-150. MR 2039970 (2005g:14113), https://doi.org/10.1090/conm/334/05979
  • [8] David Cox, Alicia Dickenstein, and Hal Schenck, A case study in bigraded commutative algebra, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 67-111. MR 2309927 (2008d:13018), https://doi.org/10.1201/9781420050912.ch3
  • [9] David Cox, Ronald Goldman, and Ming Zhang, On the validity of implicitization by moving quadrics of rational surfaces with no base points, J. Symbolic Comput. 29 (2000), no. 3, 419-440. MR 1751389 (2002d:14098), https://doi.org/10.1006/jsco.1999.0325
  • [10] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960 (97a:13001)
  • [11] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558 (93j:14001)
  • [12] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [13] J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), no. 2, 466-493. MR 647249 (83h:13023), https://doi.org/10.1016/0021-8693(82)90034-5
  • [14] J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53-83. MR 701036 (85b:13015), https://doi.org/10.1016/0021-8693(83)90173-4
  • [15] Hal Schenck, Alexandra Seceleanu, and Javid Validashti, Syzygies and singularities of tensor product surfaces of bidegree $ (2,1)$, Math. Comp. 83 (2014), no. 287, 1337-1372. MR 3167461, https://doi.org/10.1090/S0025-5718-2013-02764-0
  • [16] T. W. Sederberg, F. Chen, Implicitization using moving curves and surfaces, in Proceedings of SIGGRAPH, 1995, 301-308.
  • [17] Tom Sederberg, Ron Goldman, and Hang Du, Implicitizing rational curves by the method of moving algebraic curves, J. Symbolic Comput. 23 (1997), no. 2-3, 153-175. Parametric algebraic curves and applications (Albuquerque, NM, 1995). MR 1448692 (98g:14072), https://doi.org/10.1006/jsco.1996.0081
  • [18] Thomas W. Sederberg, Takafumi Saito, Dong Xu Qi, and Krzysztof S. Klimaszewski, Curve implicitization using moving lines, Comput. Aided Geom. Design 11 (1994), no. 6, 687-706. MR 1305914 (95h:65011), https://doi.org/10.1016/0167-8396(94)90059-0

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14M25, 14F17

Retrieve articles in all journals with MSC (2010): 14M25, 14F17


Additional Information

Eliana Duarte
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Email: emduart2@math.uiuc.edu

Hal Schenck
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Email: schenck@math.uiuc.edu

DOI: https://doi.org/10.1090/proc/12703
Keywords: Tensor product surface, bihomogeneous ideal, syzygy
Received by editor(s): August 4, 2014
Received by editor(s) in revised form: December 23, 2014
Published electronically: June 9, 2015
Additional Notes: The second author was supported by NSF 1068754, NSF 1312071
Communicated by: Irena Peeva
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society