Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclic group actions and embedded spheres in 4-manifolds


Author: M. J. D. Hamilton
Journal: Proc. Amer. Math. Soc. 144 (2016), 411-422
MSC (2010): Primary 57M60, 57S17, 57N13; Secondary 57R57
DOI: https://doi.org/10.1090/proc/12707
Published electronically: July 24, 2015
MathSciNet review: 3415607
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we derive an upper bound on the number of 2-spheres in the fixed point set of a smooth and homologically trivial cyclic group action of prime order on a simply-connected 4-manifold. This improves the a priori bound which is given by one half of the Euler characteristic of the 4-manifold. The result also shows that in some cases the 4-manifold does not admit such actions of a certain order at all or that any such action has to be pseudofree.


References [Enhancements On Off] (What's this?)

  • [1] Anar Akhmedov, Small exotic 4-manifolds, Algebr. Geom. Topol. 8 (2008), no. 3, 1781-1794. MR 2448872 (2009g:57040), https://doi.org/10.2140/agt.2008.8.1781
  • [2] Anar Akhmedov and B. Doug Park, Exotic smooth structures on small 4-manifolds with odd signatures, Invent. Math. 181 (2010), no. 3, 577-603. MR 2660453 (2012b:57048), https://doi.org/10.1007/s00222-010-0254-y
  • [3] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451-491. MR 0232406 (38 #731)
  • [4] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. MR 0236952 (38 #5245)
  • [5] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144 (54 #1265)
  • [6] Dan Burns Jr. and Michael Rapoport, On the Torelli problem for kählerian $ K-3$ surfaces, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 235-273. MR 0447635 (56 #5945)
  • [7] Weimin Chen and Slawomir Kwasik, Symplectic symmetries of 4-manifolds, Topology 46 (2007), no. 2, 103-128. MR 2313067 (2008h:53147), https://doi.org/10.1016/j.top.2006.12.003
  • [8] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279-315. MR 710056 (85c:57015)
  • [9] Allan L. Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc. 299 (1987), no. 1, 155-170. MR 869405 (88d:57013), https://doi.org/10.2307/2000487
  • [10] Allan L. Edmonds, Involutions on odd four-manifolds, Topology Appl. 30 (1988), no. 1, 43-49. MR 964061 (89m:57041), https://doi.org/10.1016/0166-8641(88)90079-X
  • [11] Allan L. Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989), no. 2, 109-124. MR 994404 (90h:57050), https://doi.org/10.1016/0166-8641(89)90075-8
  • [12] Robert E. Gompf and András I. Stipsicz, $ 4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327 (2000h:57038)
  • [13] F. Hirzebruch, The signature theorem: reminiscences and recreation, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, NJ, 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp. 3-31. MR 0368023 (51 #4265)
  • [14] Michael Klemm, Finite group actions on smooth 4-manifolds with indefinite intersection form, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)-McMaster University (Canada). MR 2695049
  • [15] D. Kotschick, Orientations and geometrisations of compact complex surfaces, Bull. London Math. Soc. 29 (1997), no. 2, 145-149. MR 1425990 (97k:32047), https://doi.org/10.1112/S0024609396002287
  • [16] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797-808. MR 1306022 (96a:57073), https://doi.org/10.4310/MRL.1994.v1.n6.a14
  • [17] Sławomir Kwasik and Reinhard Schultz, Homological properties of periodic homeomorphisms of $ 4$-manifolds, Duke Math. J. 58 (1989), no. 1, 241-250. MR 1016421 (91d:57023), https://doi.org/10.1215/S0012-7094-89-05812-2
  • [18] Hongxia Li, Cyclic group actions on elliptic surfaces $ E(2n)$, J. Math. Comput. Sci. 2 (2012), no. 6, 1759-1765. MR 3004191
  • [19] T. J. Li and A. Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula, Math. Res. Lett. 2 (1995), no. 4, 453-471. MR 1355707 (96m:57052), https://doi.org/10.4310/MRL.1995.v2.n4.a6
  • [20] Ai-Ko Liu, Some new applications of general wall crossing formula, Gompf's conjecture and its applications, Math. Res. Lett. 3 (1996), no. 5, 569-585. MR 1418572 (97k:57038), https://doi.org/10.4310/MRL.1996.v3.n5.a1
  • [21] Takao Matumoto, Homologically trivial smooth involutions on $ K3$ surfaces, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 365-376. MR 1208316 (94e:57022)
  • [22] M. McCooey, Symmetry groups of non-simply connected four-manifolds, preprint: arXiv:0707.3835v2.
  • [23] C. A. M. Peters, On automorphisms of compact Kähler surfaces, Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn--Germantown, Md., 1980, pp. 249-267. MR 605346 (82c:32029)
  • [24] Ulf Persson, Chris Peters, and Gang Xiao, Geography of spin surfaces, Topology 35 (1996), no. 4, 845-862. MR 1404912 (98h:14046), https://doi.org/10.1016/0040-9383(95)00046-1
  • [25] Daniel Ruberman, Involutions on spin $ 4$-manifolds, Proc. Amer. Math. Soc. 123 (1995), no. 2, 593-596. MR 1231042 (95c:57023), https://doi.org/10.2307/2160919
  • [26] P. A. Smith, Transformations of finite period. IV. Dimensional parity, Ann. of Math. (2) 46 (1945), 357-364. MR 0013304 (7,136e)
  • [27] Zoltán Szabó, Exotic $ 4$-manifolds with $ b^+_2=1$, Math. Res. Lett. 3 (1996), no. 6, 731-741. MR 1426531 (97j:57049), https://doi.org/10.4310/MRL.1996.v3.n6.a2
  • [28] C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Edited and with a foreword by A. A. Ranicki, Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. MR 1687388 (2000a:57089)
  • [29] Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796. MR 1306021 (96d:57035), https://doi.org/10.4310/MRL.1994.v1.n6.a13

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M60, 57S17, 57N13, 57R57

Retrieve articles in all journals with MSC (2010): 57M60, 57S17, 57N13, 57R57


Additional Information

M. J. D. Hamilton
Affiliation: Institute for Geometry and Topology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Email: mark.hamilton@math.lmu.de

DOI: https://doi.org/10.1090/proc/12707
Keywords: 4-manifold, group action, fixed point set, $G$-signature theorem
Received by editor(s): July 29, 2014
Received by editor(s) in revised form: December 4, 2014
Published electronically: July 24, 2015
Communicated by: Martin Scharlemann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society