Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rational approximations of sectional category and Poincaré duality


Authors: José Gabriel Carrasquel-Vera, Thomas Kahl and Lucile Vandembroucq
Journal: Proc. Amer. Math. Soc. 144 (2016), 909-915
MSC (2010): Primary 55M30, 55P62
DOI: https://doi.org/10.1090/proc12722
Published electronically: June 9, 2015
MathSciNet review: 3430865
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Félix, Halperin, and Lemaire have shown that the rational module category $ \operatorname {Mcat}$ and the rational Toomer invariant $ e_0$ coincide for simply connected Poincaré duality complexes. We establish an analogue of this result for the sectional category of a fibration.


References [Enhancements On Off] (What's this?)

  • [1] J. G. Carrasquel-Vera, On the sectional category of certain maps, arXiv:1503.07314 (2015).
  • [2] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • [3] Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221. MR 1957228 (2004c:68132), https://doi.org/10.1007/s00454-002-0760-9
  • [4] Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1-38. MR 664027 (84h:55011), https://doi.org/10.2307/1999190
  • [5] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, L.S. catégorie et suite spectrale de Milnor-Moore (une nuit dans le train), Bull. Soc. Math. France 111 (1983), no. 1, 89-96 (French, with English summary). MR 710377 (85d:55011)
  • [6] Yves Félix, Steve Halperin, and Jean-Michel Lemaire, The rational LS category of products and of Poincaré duality complexes, Topology 37 (1998), no. 4, 749-756. MR 1607732 (99a:55003), https://doi.org/10.1016/S0040-9383(97)00061-X
  • [7] Barry Jessup, Aniceto Murillo, and Paul-Eugène Parent, Rational topological complexity, Algebr. Geom. Topol. 12 (2012), no. 3, 1789-1801. MR 2979997, https://doi.org/10.2140/agt.2012.12.1789
  • [8] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847 (2002d:55014)
  • [9] Lucía Fernández Suárez, Pierre Ghienne, Thomas Kahl, and Lucile Vandembroucq, Joins of DGA modules and sectional category, Algebr. Geom. Topol. 6 (2006), 119-144 (electronic). MR 2199456 (2006k:55011), https://doi.org/10.2140/agt.2006.6.119
  • [10] Kathryn P. Hess, A proof of Ganea's conjecture for rational spaces, Topology 30 (1991), no. 2, 205-214. MR 1098914 (92d:55012), https://doi.org/10.1016/0040-9383(91)90006-P
  • [11] Don Stanley, The sectional category of spherical fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3137-3143. MR 1691006 (2001a:55004), https://doi.org/10.1090/S0002-9939-00-05468-X
  • [12] A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. 55 (1966), 49-140.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55M30, 55P62

Retrieve articles in all journals with MSC (2010): 55M30, 55P62


Additional Information

José Gabriel Carrasquel-Vera
Affiliation: Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium
Email: jose.carrasquel@uclouvain.be

Thomas Kahl
Affiliation: Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Email: kahl@math.uminho.pt

Lucile Vandembroucq
Affiliation: Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Email: lucile@math.uminho.pt

DOI: https://doi.org/10.1090/proc12722
Keywords: Lusternik-Schnirelmann category, sectional category, topological complexity, Sullivan models, Poincar\'e duality
Received by editor(s): October 7, 2014
Received by editor(s) in revised form: January 8, 2015
Published electronically: June 9, 2015
Additional Notes: The research of the first author was supported by FEDER through the Ministerio de Educación y Ciencia project MTM2010-18089. The research of the second and third authors was supported by FCT - Fundação para a Ciência e a Tecnologia through projects PTDC/MAT/0938317/2008 and PEstOE/MAT/UI0013/2014.
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society