Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Strong asymptotic independence on Wiener chaos


Authors: Ivan Nourdin, David Nualart and Giovanni Peccati
Journal: Proc. Amer. Math. Soc. 144 (2016), 875-886
MSC (2010): Primary 60F05, 60H07, 60G15
DOI: https://doi.org/10.1090/proc12769
Published electronically: October 6, 2015
MathSciNet review: 3430861
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F_n = (F_{1,n}, \dots ,F_{d,n})$, $ n\geq 1$, be a sequence of random vectors such that, for every $ j=1,\dots ,d$, the random variable $ F_{j,n}$ belongs to a fixed Wiener chaos of a Gaussian field. We show that, as $ n\to \infty $, the components of $ F_n$ are asymptotically independent if and only if $ \textup {Cov}(F_{i,n}^2,F_{j,n}^2)\to 0$ for every $ i\neq j$. Our findings are based on a novel inequality for vectors of multiple Wiener-Itô integrals, and represent a substantial refining of criteria for asymptotic independence in the sense of moments recently established by Nourdin and Rosiński (2014).


References [Enhancements On Off] (What's this?)

  • [1] Shuyang Bai and Murad S. Taqqu, Multivariate limit theorems in the context of long-range dependence, J. Time Series Anal. 34 (2013), no. 6, 717-743. MR 3127215, https://doi.org/10.1111/jtsa.12046
  • [2] Solesne Bourguin and Jean-Christophe Breton, Asymptotic Cramér type decomposition for Wiener and Wigner integrals, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 1, 1350005, 13. MR 3071457, https://doi.org/10.1142/S0219025713500057
  • [3] Rumen L. Mishkov, Generalization of the formula of Faa di Bruno for a composite function with a vector argument, Int. J. Math. Math. Sci. 24 (2000), no. 7, 481-491. MR 1781515 (2001f:26016), https://doi.org/10.1155/S0161171200002970
  • [4] Ivan Nourdin, Lectures on Gaussian approximations with Malliavin calculus, Séminaire de Probabilités XLV, Lecture Notes in Math., vol. 2078, Springer, Cham, 2013, pp. 3-89. MR 3185909, https://doi.org/10.1007/978-3-319-00321-4_1
  • [5] Ivan Nourdin, A webpage on Stein's method and Malliavin calculus, https://sites.google.com/site/malliavinstein
  • [6] Ivan Nourdin and David Nualart, Central limit theorems for multiple Skorokhod integrals, J. Theoret. Probab. 23 (2010), no. 1, 39-64. MR 2591903 (2011d:60075), https://doi.org/10.1007/s10959-009-0258-y
  • [7] Ivan Nourdin and Giovanni Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. From Stein's method to universality. MR 2962301
  • [8] Ivan Nourdin and Giovanni Peccati (2013): The optimal fourth moment theorem. To appear in: Proceedings of the American Mathematical Society.
  • [9] Ivan Nourdin and Jan Rosiński, Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws, Ann. Probab. 42 (2014), no. 2, 497-526. MR 3178465, https://doi.org/10.1214/12-AOP826
  • [10] David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233 (2006j:60004)
  • [11] David Nualart and Giovanni Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005), no. 1, 177-193. MR 2118863 (2005k:60077), https://doi.org/10.1214/009117904000000621
  • [12] David Nualart and Moshe Zakai, A summary of some identities of the Malliavin calculus, Stochastic partial differential equations and applications, II (Trento, 1988), Lecture Notes in Math., vol. 1390, Springer, Berlin, 1989, pp. 192-196. MR 1019603 (91d:60129), https://doi.org/10.1007/BFb0083946
  • [13] Giovanni Peccati and Ciprian A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, Séminaire de Probabilités XXXVIII, Lecture Notes in Math., vol. 1857, Springer, Berlin, 2005, pp. 247-262. MR 2126978 (2006i:60071)
  • [14] Eric V. Slud, The moment problem for polynomial forms in normal random variables, Ann. Probab. 21 (1993), no. 4, 2200-2214. MR 1245307 (95c:60019)
  • [15] Ali Süleyman Üstünel and Moshe Zakai, On independence and conditioning on Wiener space, Ann. Probab. 17 (1989), no. 4, 1441-1453. MR 1048936 (91g:60068)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60F05, 60H07, 60G15

Retrieve articles in all journals with MSC (2010): 60F05, 60H07, 60G15


Additional Information

Ivan Nourdin
Affiliation: Université du Luxembourg, Unité de Recherche en Mathématiques, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
Email: ivan.nourdin@uni.lu

David Nualart
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: nualart@math.ku.edu

Giovanni Peccati
Affiliation: Université du Luxembourg, Unité de Recherche en Mathématiques, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
Email: giovanni.peccati@gmail.com

DOI: https://doi.org/10.1090/proc12769
Keywords: Gaussian fields, independence, limit theorems, Malliavin calculus, Wiener chaos
Received by editor(s): January 8, 2014
Received by editor(s) in revised form: January 12, 2015
Published electronically: October 6, 2015
Additional Notes: The first author was partially supported by the ANR Grant ANR-10-BLAN-0121.
The second author was partially supported by the NSF grant DMS1208625.
The third author was partially supported by the grant F1R-MTH-PUL-12PAMP (PAMPAS), from Luxembourg University
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society