Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Mirror symmetry and the classification of orbifold del Pezzo surfaces


Authors: Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince and Ketil Tveiten
Journal: Proc. Amer. Math. Soc. 144 (2016), 513-527
MSC (2010): Primary 14S45, 52B20; Secondary 14S10, 14N35
DOI: https://doi.org/10.1090/proc/12876
Published electronically: September 24, 2015
MathSciNet review: 3430830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with $ \mathbb{Q}$-Gorenstein deformation classes of del Pezzo surfaces.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337-1398. MR 2450211 (2009k:14108), https://doi.org/10.1353/ajm.0.0017
  • [2] D. Abramovich and A. Vistoli, Twisted stable maps and quantum cohomology of stacks, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 97-138 (electronic). MR 2172496 (2007d:14100)
  • [3] Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17. MR 3007265, https://doi.org/10.3842/SIGMA.2012.094
  • [4] Mohammad Akhtar and Alexander M. Kasprzyk, Singularity content,
    arXiv:
    1401.5458 [math.AG], 2014.
  • [5] Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557-607. MR 2207875 (2006m:14062), https://doi.org/10.1007/s00208-005-0705-8
  • [6] Klaus Altmann, Jürgen Hausen, and Hendrik Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), no. 2, 215-242. MR 2426131 (2009f:14107), https://doi.org/10.1007/s00031-008-9011-3
  • [7] Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The geometry of $ T$-varieties, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 17-69. MR 2975658, https://doi.org/10.4171/114-1/2
  • [8] Weimin Chen and Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25-85. MR 1950941 (2004k:53145), https://doi.org/10.1090/conm/310/05398
  • [9] Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1-31. MR 2104605 (2005j:57036), https://doi.org/10.1007/s00220-004-1089-4
  • [10] Ionuţ Ciocan-Fontanine and Bumsig Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014), no. 4, 400-448. MR 3272909, https://doi.org/10.14231/AG-2014-019
  • [11] Tom Coates, Alessio Corti, Sergey Galkin, and Alexander M. Kasprzyk,
    Quantum periods for $ 3$-dimensional Fano manifolds,
    arXiv:1303.3288 [math.AG], 2013.
  • [12] Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng,
    A mirror theorem for toric stacks,
    arXiv:1310.4163 [math.AG], 2013.
  • [13] Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng,
    Some applications of the mirror theorem for toric stacks,
    arXiv:1401.2611 [math.AG], 2014.
  • [14] Alessio Corti and Liana Heuberger, Del Pezzo surfaces with $ \frac 1{3}(1,1)$ points,
    arXiv:1505.02092 [math.AG], 2015.
  • [15] Kento Fujita and Kazunori Yasutake,
    Classification of log del Pezzo surfaces of index three,
    arXiv:1401.1283 [math.AG], 2014.
  • [16] Sergey Galkin and Alexandr Usnich, Mutations of Potentials,
    preprint IPMU 10-0100, 2010.
  • [17] Daniel Greb, Stefan Kebekus, and Sándor J. Kovács, Extension theorems for differential forms and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math. 146 (2010), no. 1, 193-219. MR 2581247 (2011c:14054), https://doi.org/10.1112/S0010437X09004321
  • [18] Daniel Greb, Stefan Kebekus, Sándor J. Kovács, and Thomas Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87-169. MR 2854859, https://doi.org/10.1007/s10240-011-0036-0
  • [19] Mark Gross, Paul Hacking, and Seán Keel, Mirror symmetry for log Calabi-Yau surfaces I,
    arXiv:1106.4977 [math.AG], 2011.
  • [20] Mark Gross, Paul Hacking, and Seán Keel, Moduli of surfaces with an anti-canonical cycle,
    arXiv:1211.6367 [math.AG], 2012.
  • [21] Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301-1428. MR 2846484, https://doi.org/10.4007/annals.2011.174.3.1
  • [22] Nathan Owen Ilten, Mutations of Laurent polynomials and flat families with toric fibers, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 047, 7. MR 2958983, https://doi.org/10.3842/SIGMA.2012.047
  • [23] Alexander M. Kasprzyk, Benjamin Nill, and Thomas Prince, Minimality and mutation-equivalence of polygons,
    arXiv:1501.05335 [math.AG], 2015.
  • [24] Alexander M. Kasprzyk and Ketil Tveiten, Maximally mutable Laurent polynomials,
    in preparation.
  • [25] János Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 113-199. MR 1144527 (93b:14059)
  • [26] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338. MR 922803 (88m:14022), https://doi.org/10.1007/BF01389370
  • [27] Alessandro Oneto and Andrea Petracci, On the quantum periods of del Pezzo surfaces with $ \frac 1{3}(1,1)$ singularities,
    arXiv:1507.08589 [math.AG], 2015.
  • [28] Ketil Tveiten,
    Period integrals and mutation,
    arXiv:1501.05095 [math.AG], 2015.
  • [29] Jonathan M. Wahl, Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980), no. 3, 241-262. MR 597833 (82d:14004), https://doi.org/10.1007/BF0322000

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14S45, 52B20, 14S10, 14N35

Retrieve articles in all journals with MSC (2010): 14S45, 52B20, 14S10, 14N35


Additional Information

Mohammad Akhtar
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: mohammad.akhtar03@imperial.ac.uk

Tom Coates
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: t.coates@imperial.ac.uk

Alessio Corti
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: a.corti@imperial.ac.uk

Liana Heuberger
Affiliation: Institut Mathematique de Jussieu, 4 Place Jussieu, 75005 Paris, France
Email: liana.heuberger@imj-prg.fr

Alexander Kasprzyk
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: a.m.kasprzyk@imperial.ac.uk

Alessandro Oneto
Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
Email: oneto@math.su.se

Andrea Petracci
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: a.petracci13@imperial.ac.uk

Thomas Prince
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
Email: t.prince12@imperial.ac.uk

Ketil Tveiten
Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
Email: ktveiten@math.su.se

DOI: https://doi.org/10.1090/proc/12876
Received by editor(s): January 26, 2015
Published electronically: September 24, 2015
Additional Notes: This work was supported by EPSRC grant EP/I008128/1 and ERC Starting Investigator Grant 240123.
Communicated by: Lev Borisov
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society