Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Schrödinger operators on graphs: Symmetrization and Eulerian cycles


Authors: G. Karreskog, P. Kurasov and I. Trygg Kupersmidt
Journal: Proc. Amer. Math. Soc. 144 (2016), 1197-1207
MSC (2010): Primary 34L25, 81U40; Secondary 35P25, 81V99
DOI: https://doi.org/10.1090/proc12784
Published electronically: July 8, 2015
MathSciNet review: 3447672
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral properties of the Schrödinger operator on a finite compact metric graph with delta-type vertex conditions are discussed. Explicit estimates for the lowest eigenvalue (ground state) are obtained using two different methods: Eulerian cycle and symmetrization techniques.


References [Enhancements On Off] (What's this?)

  • [1] Quantum graphs and their applications, Contemporary Mathematics, vol. 415, American Mathematical Society, Providence, RI, 2006. Edited by Gregory Berkolaiko, Robert Carlson, Stephen A. Fulling and Peter Kuchment. MR 2279143 (2007f:81004)
  • [2] G. Berkolaiko and P. Kuchment, Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 117-137. MR 2985312, https://doi.org/10.1090/pspum/084/1352
  • [3] Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208
  • [4] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Academiae Sci. I. Petropolitanae 8 (1736), 128-140.
  • [5] Pavel Exner and Michal Jex, On the ground state of quantum graphs with attractive $ \delta $-coupling, Phys. Lett. A 376 (2012), no. 5, 713-717. MR 2880105, https://doi.org/10.1016/j.physleta.2011.12.035
  • [6] Leonid Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 199-211 (English, with English and French summaries). MR 2141695 (2006b:34193)
  • [7] Carl Hierholzer and Chr Wiener, Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren, Math. Ann. 6 (1873), no. 1, 30-32 (German). MR 1509807, https://doi.org/10.1007/BF01442866
  • [8] Peter Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004), no. 1, S107-S128. Special section on quantum graphs. MR 2042548 (2005h:81148), https://doi.org/10.1088/0959-7174/14/1/014
  • [9] Peter Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A 38 (2005), no. 22, 4887-4900. MR 2148631 (2006a:81035), https://doi.org/10.1088/0305-4470/38/22/013
  • [10] Pavel Kurasov, Graph Laplacians and topology, Ark. Mat. 46 (2008), no. 1, 95-111. MR 2379686 (2009a:47043), https://doi.org/10.1007/s11512-007-0059-4
  • [11] Pavel Kurasov, Schrödinger operators on graphs and geometry. I. Essentially bounded potentials, J. Funct. Anal. 254 (2008), no. 4, 934-953. MR 2381199 (2009a:81061), https://doi.org/10.1016/j.jfa.2007.11.007
  • [12] P. Kurasov, Quantum graphs: spectral theory and inverse problems, to appear in Birkhäuser.
  • [13] P. Kurasov, G. Malenová, and S. Naboko, Spectral gap for quantum graphs and their edge connectivity, J. Phys. A 46 (2013), no. 27, 275309, 16. MR 3081922, https://doi.org/10.1088/1751-8113/46/27/275309
  • [14] Pavel Kurasov and Sergey Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4 (2014), no. 2, 211-219. MR 3232809, https://doi.org/10.4171/JST/67
  • [15] Serge Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math. (2) 111 (1987), no. 4, 401-413 (French, with English summary). MR 921561 (89a:58114)
  • [16] Olaf Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, vol. 2039, Springer, Heidelberg, 2012. MR 2934267

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34L25, 81U40, 35P25, 81V99

Retrieve articles in all journals with MSC (2010): 34L25, 81U40, 35P25, 81V99


Additional Information

G. Karreskog
Affiliation: Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

P. Kurasov
Affiliation: Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

I. Trygg Kupersmidt
Affiliation: Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

DOI: https://doi.org/10.1090/proc12784
Keywords: Quantum graphs, ground state
Received by editor(s): February 3, 2015
Received by editor(s) in revised form: March 9, 2015
Published electronically: July 8, 2015
Communicated by: Varghese Mathai
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society