Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers for noncommutative Walsh-Fourier series


Author: Lian Wu
Journal: Proc. Amer. Math. Soc. 144 (2016), 1073-1085
MSC (2010): Primary 46L52, 46L53, 47A30; Secondary 60G42
DOI: https://doi.org/10.1090/proc/12831
Published electronically: August 5, 2015
MathSciNet review: 3447661
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider multipliers for noncommutative Walsh-Fourier series. Let $ \mathcal {R}$ be the type $ II_1$ hyperfinite factor. For $ x \in L_1(\mathcal {R})$, $ 0<\alpha <1$, the multiplier transformation of $ x$ is defined by setting

$\displaystyle J^\alpha x = \sum _{\gamma \in \mathcal {F}}2^{-\gamma (1)\alpha }\hat {x}(\gamma )w_\gamma ,$

where $ (w_\gamma )_{\gamma \in \mathcal {F}}$ is the noncommutative Walsh system in $ \mathcal {R}$ and $ \sum _{\gamma \in \mathcal {F}}\hat {x}(\gamma )w_\gamma $ is the Walsh-Fourier series of $ x$. It is shown that

$\displaystyle \Vert J^\alpha x\Vert _{L_{1/(1-\alpha ),\infty }(\mathcal {R})}\leq c \Vert x\Vert _{L_1(\mathcal {R})},$

where $ c$ is a constant depending only on $ \alpha $. Via interpolations, we deduce that $ J^\alpha $ is bounded from $ L_{p}(\mathcal {R})$ into $ L_{q}(\mathcal {R})$ where $ 1<p<q$ and $ \alpha =1/p-1/q$, thus providing a noncommutative analogue of a classical result of Watari.

References [Enhancements On Off] (What's this?)

  • [1] Sh. A. Ayupov, S. V. Ferleger, and F. A. Sukochev, Isomorphism between the associative and non-associative $ L_p$-spaces of type $ {\rm II}_1$ hyperfinite factors, Math. Scand. 78 (1996), no. 2, 271-285. MR 1414654 (98d:46074)
  • [2] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58 #2349)
  • [3] Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662 (98i:15003)
  • [4] Eric A. Carlen and Elliott H. Lieb, Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys. 155 (1993), no. 1, 27-46. MR 1228524 (94h:46101)
  • [5] M. Caspers, D. Potapov, and F. Sukochev, The Walsh basis in the $ L^p$-spaces of hyperfinite $ {\rm III}_\lambda $ factors, $ 0<\lambda \leq 1$, J. Math. Anal. Appl. 408 (2013), no. 1, 154-164. MR 3079954, https://doi.org/10.1016/j.jmaa.2013.06.003
  • [6] I. Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971), no. 1, 17-27. MR 0295398 (45 #4464)
  • [7] Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), no. 4, 583-597. MR 1004176 (90j:46054), https://doi.org/10.1007/BF01215160
  • [8] Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), no. 2, 717-750. MR 1113694 (94a:46093), https://doi.org/10.2307/2154295
  • [9] Tord Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. MR 0415352 (54 #3440)
  • [10] Guixiang Hong, Luis Daniel López-Sánchez, José María Martell, and Javier Parcet, Calderón-Zygmund operators associated to matrix-valued kernels, Int. Math. Res. Not. IMRN 5 (2014), 1221-1252. MR 3178596
  • [11] Yong Jiao, Burkholder's inequalities in noncommutative Lorentz spaces, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2431-2441. MR 2607873 (2011f:46080), https://doi.org/10.1090/S0002-9939-10-10267-6
  • [12] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229 (98f:46001a)
  • [13] Javier Parcet, Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory, J. Funct. Anal. 256 (2009), no. 2, 509-593. MR 2476951 (2010g:42035), https://doi.org/10.1016/j.jfa.2008.04.007
  • [14] Gilles Pisier and Quanhua Xu, Non-commutative $ L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517. MR 1999201 (2004i:46095), https://doi.org/10.1016/S1874-5849(03)80041-4
  • [15] Narcisse Randrianantoanina, Non-commutative martingale transforms, J. Funct. Anal. 194 (2002), no. 1, 181-212. MR 1929141 (2003m:46098)
  • [16] F. Schipp, W. R. Wade, and P. Simon, Walsh series, Adam Hilger, Ltd., Bristol, 1990. An introduction to dyadic harmonic analysis; With the collaboration of J. Pál. MR 1117682 (92g:42001)
  • [17] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728 (81e:46038)
  • [18] Chinami Watari, Multipliers for Walsh-Fourier series, Tôhoku Math. J. (2) 16 (1964), 239-251. MR 0206608 (34 #6426)
  • [19] Shigeki Yano, On Walsh-Fourier series, Tôhoku Math. J. (2) 3 (1951), 223-242. MR 0045236 (13,550a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L52, 46L53, 47A30, 60G42

Retrieve articles in all journals with MSC (2010): 46L52, 46L53, 47A30, 60G42


Additional Information

Lian Wu
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410083, People’s Republic of China
Address at time of publication: Department of Mathematics, Miami University, Oxford, Ohio 45056
Email: wul5@miamioh.edu, wulian567@126.com

DOI: https://doi.org/10.1090/proc/12831
Keywords: Noncommutative martingales, multipliers, Walsh-Fourier series
Received by editor(s): April 10, 2014
Received by editor(s) in revised form: February 5, 2015
Published electronically: August 5, 2015
Additional Notes: The author was partially supported by NSFC (No. 11471337) and the Fundamental Research Funds for the Central Universities of Central South University: 2013zzts007.
Communicated by: Marius Junge
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society