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LIE-MODEL FOR THOM SPACES OF TANGENT BUNDLES

YVES FÉLIX, JOHN OPREA, AND DANIEL TANRÉ

(Communicated by Michael A. Mandell)

Abstract. We describe the rational homotopy type of Thom spaces and use
this information to create a Quillen Lie-model in the case of the tangent bundle
of a closed, oriented, simply-connected manifold. Examples are given.

In this paper, we describe algebraic models for Thom spaces of bundles, which
appear, in particular, as the homotopy cofiber of the canonical injection F (M, 2) ↪→
M ×M of the configuration space of two points in a manifold M . Our aim is the
determination of the rational homotopy type of the cofiber map ρ : M × M →
Th(TM) in the case of a closed, oriented, simply-connected manifold M . This
description leads to a conjectural Lie-model of the configuration space of two points
in M .

Lambrechts and Stanley have already given ([7]) a Sullivan model of F (M, 2),
based on the existence of Sullivan models of M satisfying Poincaré duality. The
advantages of minimal Lie-models of a manifold are that Poincaré duality is present
at the level of the generators and that such a model gives directly a presentation of
the rational homotopy Lie algebra of F (M, 2). This existence of Poincaré duality
on homology allows an explicit Lie version of the Thom isomorphism and we can
construct the model of M×M → Th(TM) directly from the initial conditions of the
problem, the minimal Lie-model of M and the intersection product on homology;
see Theorem 3.2. We now briefly describe the contents of the paper.

In §1, we briefly recall the Thom isomorphism, specifying sign conventions
and notation. In particular, we express (see Proposition 1.2) the canonical map
ρ∗ : H∗(M ×M) → H∗(Th(TM)) in terms of the intersection product.

In §2, we give an explicit description of the rational homotopy type of the Thom
space of any vector bundle (see Theorem 2.4) over a closed, oriented, nilpotent
manifold in terms of the Euler class of the bundle.

Let LM×M and LTh(TM) be the Lie-models of M×M and Th(TM), respectively.
We prove, in §3, that the projection ρ : M×M → Th(TM) has a Lie-model which is
entirely determined by the map induced in homology, ρ∗. Finally, in §4, we display
some concrete examples of this Lie-model.
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As we are concerned with rational homotopy type, all homologies and cohomolo-
gies are taken with coefficients in Q. The degree of an element, a, of a graded vector
space is denoted by |a|.

1. Poincaré duality and Thom’s isomorphism revisited

Let N be a closed, connected, oriented manifold with fundamental class [N ] ∈
Hn(N). Poincaré duality is the isomorphism generated by the cap product with
[N ],

− ∩ [N ] : Hn−k(N) −→ Hk(N).

We denote by DN the inverse of − ∩ [N ], which is thus characterized by

DN (a) ∩ [N ] = a, for all a ∈ H∗(N).

If we orient the manifold N ×N by the cross product [N ]× [N ] ∈ H2n(N ×N), we
have, for any a ∈ H|a|(N), b ∈ H|b|(N),

a× b = (DN (a) ∩ [N ])× (DN (b) ∩ [N ])

= (−1)n(n−|b|) (DN (a)×DN (b)) ∩ [N ×N ],

which implies

DN×N (a× b) = (−1)n(n−|b|)DN (a)×DN (b).

The intersection product of two homology classes is defined as in [3] by

a � b = D−1
N (DN (a) � DN (b))

= (DN (a) � DN (b)) ∩ [N ] = DN (a) ∩ (DN (b) ∩ [N ])

= DN (a) ∩ b.

Let f : N ′ → N be a smooth map between closed, connected, oriented manifolds of
respective fundamental classes [N ′] ∈ Hn′(N ′) and [N ] ∈ Hn(N). The homological
transfer ([3, Section 11 of Chapter VII]) of f is

f! = (−1)j(n
′−n)D−1

N ′ ◦f∗ ◦DN : Hj(N) → Hn−j(N) → Hn−j(N ′) → Hn′−n+j(N
′).

In the case of the diagonal map Δ: M → M ×M of a closed, connected, oriented
manifold of fundamental class [M ] ∈ Hm(M), the two previous notions are related
by

Δ!(a× b) = (−1)jm(D−1
M ◦Δ∗ ◦ DM×M )(a× b)

= (−1)m(m+|a|)D−1
M (Δ∗(DM (a)×DM (b)))

= (−1)m(m+|a|)(DM (a) � DM (b)) ∩ [M ]

= (−1)m(m−|a|)a � b.

Given an oriented vector bundle of rank k, ξ : E(ξ) → N , over N , there are two
associated bundles over N : the disk bundle, D(ξ), consisting of all (x, v) ∈ E(ξ)
with ‖v‖ ≤ 1, and the sphere bundle, S(ξ), consisting of all (x, v) ∈ E(ξ) with
‖v‖ = 1.

Definition 1.1. The cofiber of the inclusion S(ξ) ↪→ D(ξ) is the Thom space of
the bundle ξ, denoted Th(ξ). We also write

Th(ξ) = D(ξ)/S(ξ).
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In [14], Thom proves the existence of an isomorphism

H∗(N) ∼= H∗+k(D(ξ), S(ξ)) ∼= H∗+k(Th(ξ)),

induced by the cap product with a cohomology class, called the Thom class,
U ∈ Hk(D(ξ), S(ξ)). Below we will give a more explicit description of the Thom
isomorphism in terms of intersection product in the case of the tangent bundle.

In order to do that, we must relate the tangent space TM of an m-manifold Mm

to the configuration space of two points in M . Recall that the configuration space
of k points in a manifold M is defined by

F (M,k) = {(x1, . . . , xk) |xi 	= xj , for i 	= j}.
The case k = 2 allows a nicer description as the complement of the diagonal map
Δ: M → M ×M (see [5, 7]). Indeed, by identifying the disk bundle of the normal
bundle νΔ of the embedding Δ with a closed tubular neighborhood T 
 M in
M × M , we see that the left-hand square of the next diagram is a (homotopy)
pushout diagram

∂T
ιT ��

��

T

j

��

ρ′
�� Th(TM)

F (M, 2)
ι �� M ×M

ρ
�� Th(TM) ,

where j : T → M × M is homotopic to the diagonal map Δ and the maps ρ and
ρ′ are defined as follows. Because T ∼= D(νΔ) and ∂T ∼= S(νΔ), the map ιT has
cofiber Th(νΔ). Because the diagram is a pushout, the bottom row, ι, also has
cofiber Th(νΔ) up to homotopy type. Finally, it is well known that the normal
bundle νΔ is in fact isomorphic to the tangent bundle of M (see [9]). Hence, both
cofibers are really Th(TM), as indicated in the diagram.

Proposition 1.2. The map induced in homology by the projection to the cofiber,
ρ : M ×M → Th(TM), is given by

Th∗ ◦ ρ∗(a× b) = (−1)m(m−|a])a � b = Δ!(a× b).

Since [M ] � a = a � [M ] = a, the map ρ∗ is surjective in homology.

Proof. The fundamental class [M ] × [M ] ∈ H2m(M × M) of the product induces
fundamental classes ξM ∈ H2m(M ×M, (M ×M)\ΔM ) and [T ] ∈ H2m(T, ∂T ) by
excision. These classes produce isomorphisms

− ∩ [T ] : H2m−k(T ) → Hk(T, ∂T )

and
− ∩ [ξM ] : H2m−k(M) → Hk(M ×M, (M ×M)\ΔM ),

whose inverse maps are respectively denoted DT and D(M×M)\ΔM
. These iso-

morphisms are compatible with the long exact sequences associated to the pair
(M × M,ΔM ) (see [1, Corollary 8.4, page 352]); that is, the following diagram is
commutative:

Hj(M ×M)
ρ∗ ��

DM×M

��

Hj(M ×M, (M ×M)\ΔM )

D(M×M)\ΔM

��

Hj(T, ∂T )
∼=��

DT

��

H2m−j(M ×M)
Δ∗

�� H2m−j(M) H2m−j(T ),
∼=��
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where the right-hand horizontal maps are isomorphisms by excision.
With the preliminaries above, we can now describe the Thom isomorphism.

Denote by i : M → T the canonical inclusion. The Thom class U ∈ Hm(T, ∂T ),
defined by

U ∩ [T ] = i∗([M ]) ∈ Hm(T, ∂T ),

induces isomorphisms

Th∗(−) = U ∩ − : Hj+m(T, ∂T ) → Hj(T )

and
Th∗(−) = U � − : Hj(T ) → Hj+m(T, ∂T ).

These isomorphisms are compatible with taking the cap product with [T ], as we
can see by computing, for x ∈ H2m−j(T ),

(Th∗) ◦ (− ∩ [T ])(x) = U ∩ (x ∩ [T ]) = (U � x) ∩ [T ] = (− ∩ [T ]) ◦ Th∗(x).
We therefore have that the following diagram is commutative:

Hj(T, ∂T )
Th∗ �� Hj−m(T )

H2m−j(T )

−∩[T ]

��

Th∗
�� H3m−j(T, ∂T )

−∩[T ]

��

Now, adjoining this diagram to the one above we obtain a commutative diagram,

Hj(M ×M) ��

DM×M
��

Hj(M ×M, (M ×M)\ΔM ) Hj(T, ∂T )
∼=��

Th∗ �� Hj−m(T )

H2m−j(M ×M)
Δ∗

�� H2m−j(M) H2m−j(T, ∂T )
∼=�� Th∗

�� H3m−j(T, ∂T ).

−∩[T ]

��

The composition of the top line is exactly Th∗ ◦ ρ∗. We proceed down, across and
up and obtain

a× b �→(−1)m(m−[b])DM (a)×DM (b) �→ (−1)m(m−[b])DM (a) � DM (b)

�→(−1)m(m−[b])U � DM (a) � DM (b) = (−1)m(m−|a|)DM (a) � DM (b) � U

�→(−1)m(m−|a|)(DM (a) � DM (b) � U) ∩ [T ]

=(−1)m(m−|a|)(DM (a) � DM (b)) ∩ i∗([M ])

=(−1)m(m−|a|)a � b = Δ!(a× b).

�

2. Rational homotopy type of Thom spaces

The commutative differential graded algebra (henceforth cdga) version of rational
homotopy theory, introduced by Sullivan ([12]), constructs algebraic models for
spaces of the form (∧V, d), where ∧V is the algebra freely generated by the graded
vector space V and d is a graded algebra differential. These are delineated in, for
example, [4], [5], where the statements that follow are elaborated on. When the
differential is decomposable (i.e., d(v) ∈ ∧+V · ∧+V ), then the algebraic model is
called minimal and has, within it, knowledge of the complete rational homotopy
type of the space it corresponds to. For example, if the finite-type nilpotent space X
has algebraic minimal model (∧V, d), then we know in particular that H∗(X;Q) ∼=
H∗(∧V, d) and V ∼= Hom(π∗(X),Q).
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Now, in order to understand the rational homotopy type of a Thom space
Th(ξ) = D(ξ)/S(ξ), we just need to write down a model of the inclusion of the
sphere bundle into the disk bundle, S(ξ) ↪→ D(ξ), as a cofibration. For this,
we recall the so-called surjective model for a map f : X → Y . Let (∧W,d) and
(∧V, d) be models for Y and X respectively and consider the cdga morphism
F : (∧W,d) → (∧V, d) guaranteed by the general theory. Then, after tensoring
with the acyclic cdga ∧(V, dV ), we define a cdga morphism

F̂ : (∧W ⊗ ∧(V, dV ), d) → (∧V, d′)
by restricting to F on ∧W , v �→ v and (dv) �→ d(v). We have the following; see [4].

Theorem 2.1. Let F̂ : (∧W ⊗ ∧(V, dV ), d) → (∧V, d′) be the surjective model of

the map f : X → Y . Then the kernel, Ker(F̂ ), together with the field Q in degree 0,
is a model (usually non-free) for the cofiber of f .

Example 2.2. We illustrate this technique with the classical and well-known ex-
ample of the Hopf fibration, h : S7 → S4. A surjective model of it is given by

Ĥ : (∧(e, a)⊗ ∧(ē, z), de = 0, da = e2, dē = z, dz = 0) → (∧(ē), dē = 0)

with |e| = 4, |ē| = |a| = 7, |z| = 8, e �→ 0, a �→ ē, ē �→ ē and z �→ 0. The kernel
is given by ∧(e, a, ē, z) · ∧+(e ⊕ z ⊕ (ē − a)). This is the ideal generated by e, z
and ē − a. First note that we can change generators by taking ê = ē − a. Then
quotienting by the acyclic ideal (ê, z) (since dê = z), we get a quasi-isomorphism

∧(e, a, ê, z) · ∧+(e⊕ z ⊕ ê)
�−→ ∧(e, a) · ∧+(e),

with d(ea) = e3. Note that a itself is not in this algebra, so e2 is a non-trivial
cocycle. Therefore, the cohomology of the cofiber is the truncated polynomial
algebra Q[e]/(e3). Denote by i4 = id: S4 → S4 the identity map. A minimal model
for (Q[e]/(e3), 0) is (∧(e, y), de = 0, dy = e3), with |y| = 11, and, as expected, the
corresponding space is HP(2) = S4 ∪[i4,i4] e

8.

Let N be a closed, oriented, nilpotent manifold, of finite type, and let ξ : E(ξ) →
N be an oriented vector bundle of rank k with associated disk bundle D(ξ) and
sphere bundle S(ξ). As the space D(ξ) has the homotopy type of N , the Thom
space Th(ξ) is homotopically equivalent to the homotopy cofiber of the fibration
S(ξ) → N . (For instance, if ξ is a trivial bundle, the Thom space has the homotopy
type of (N ×Dk)/(N × Sk−1) = Σk(N+) = ΣkN ∨ Sk.)

Models for sphere bundles come in two forms depending on the parity of the
bundle rank; see [4, Example 4, page 202].

Proposition 2.3. Let ξ : E(ξ) → N be an oriented vector bundle of rank k and let
(∧V, d) be a model for N .

(1) If k is even, then a model for S(ξ) is given by (∧V ⊗∧(e), d), with |e| = k−1,
d|V = d and de = χ, where χ is a representative for the Euler class of ξ.

(2) If k is odd, then a model for S(ξ) is given by (∧V ⊗ ∧(e, a), d), with |e| =
k − 1, |a| = 2k − 3, d|V = d, de = 0 and da = e2 + p, where p is a
representative of the (k − 1)/2-th rational Pontryagin class of ξ in ∧V .

Recall that the (rational) Euler class of an odd-dimensional vector bundle is
always zero; see [9, Property 9.4].

The rational homotopy type of MSO(n), MO(n), MU(n), with n odd, was studied
by Burlet ([2]); see also [10] for the case of a closed connected subgroup of MSO(n).
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We now classify Thom spaces of bundles up to rational homotopy type and specify
the particular case of the tangent bundle in Proposition 3.1.

Theorem 2.4. Let ξ : E(ξ) → N be an oriented vector bundle of rank k. Then
there are two cases.

(1) If the rational Euler class of ξ is zero, then

Th(ξ) 
Q ΣkN ∨ Sk.

(2) Let (∧V, d) be a minimal model for N . If the rational Euler class of ξ is
non-zero with representative χ ∈ ∧V , then a model for Th(ξ) is given by

(Q⊕ (∧V ⊗ z), d),

with |z| = k, z2 = zχ and general product (a ⊗ z) · (b ⊗ z) = abχ ⊗ z,
inducing the algebra structure on H∗(Th(ξ);Q) ∼= Q⊕ (H∗(N)⊗ z).

Proof. Let (∧V, d) be a model for N .
(1) Suppose χ = 0. We first consider an even-dimensional vector bundle. We are

in the first case of Proposition 2.3, so a model of S(ξ) → N is given by (∧V, d) →
(∧V ⊗ ∧(e), d), |e| = k − 1, d|V = d, de = 0. By Theorem 2.1, the kernel of a
surjective model, together with the field in degree 0, is a model of the homotopy
cofiber, Th(ξ). Therefore, we build a surjective model starting from the previous
model, as:

ϕ : (∧V ⊗ ∧(e, z), D) → (∧V ⊗ ∧(e), d),
where |e| = k − 1, |z| = k, D|V = d, De = z, Dz = 0, ϕ(z) = 0 and ϕ(e) = e. The
kernel of ϕ is given by

(∧V ⊗ ∧(e)) · ∧+(z).

Because D(ez) = z2, we can quotient the kernel by the acyclic ideal generated
by (ez, z2) and get a quasi-isomorphism between this kernel and (∧V ⊗ z, d) with
z2 = 0. As there are no products in this last model, we can mapH+(ΣkN)⊕H+(Sk)
to (∧V ⊗ z, d) by a cdga map. This proves that the Thom space, Th(ξ), has the
rational homotopy type of ΣkN ∨ Sk.

We now consider the case of an odd-dimensional vector bundle. As before, start-
ing from a model of the sphere bundle given by Proposition 2.3, we construct a
surjective model of S(ξ) → N . For that, consider

ϕ : (∧V ⊗ ∧(e, z, a, y), D) → (∧V ⊗ ∧(e, a), d),
where |e| = k − 1, |a| = 2k − 3, d|V = d, de = 0, da = e2 + p, |z| = k, |y| = 2k − 2,
D|V = d, De = z, Dz = 0, Da = e2 + p + y, Dy = −2ez, ϕ(e) = e, ϕ(a) = a
and ϕ(z) = ϕ(y) = 0. A verification shows that D2 = 0. The canonical inclusion,
(∧V, d) → (∧V ⊗ ∧(e, z, a, y), D), can be filtered by the degree in ∧V . The first
term of the associated spectral sequence is

∧V → ∧V ⊗H∗(∧(e, z, a, y), D),

with Dy = −2ez, Dz = 0, Da = e2 + y, De = z. By considering the linear part of
D, we have H∗((∧(e, a, z, y), D)) = Q and we may conclude that ϕ is a surjective
model of S(ξ) → N . Observe also that the tensor product of ϕ with Q over ∧V
gives a short exact sequence,

0 → K → (∧(e, a, z, y), D)
Q⊗∧V ϕ−−−−−→ (∧(e, a), d) → 0,
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with K = ∧(e, a)⊗∧+(z, y). From the long exact sequence associated to this short
exact sequence, we deduce that the canonical inclusion, ∧+z → K, is a quasi-
isomorphism.

We now have to study the kernel of the surjective model, ϕ, which is equal to

∧V ⊗ ∧(e, a)⊗ ∧+(z, y).

Consider the following canonical inclusion, with the induced differentials:

∧V ⊗ ∧+z → kerϕ = ∧V ⊗ ∧(e, a)⊗ ∧+(z, y).

As before, we filter each term by the degree in ∧V and get a morphism of spectral
sequences whose first stage is

∧V ⊗ ∧+z → ∧V ⊗H∗(∧(e, a)⊗ ∧+(z, y), D) = ∧V ⊗ ∧+z.

(The equality comes from the previous determination of H∗(K) =
H∗(∧(e, a)⊗∧+(z, y)) = ∧+z.) Since we have an isomorphism at the E1-level, this
canonical inclusion is a quasi-isomorphism. Thus, since the cdga (∧V ⊗∧+z,D) is
connected to the kernel of ϕ by a quasi-isomorphism, we deduce from Theorem 2.1
that this cdga is a (non-free) model of Th(ξ). The same argument as in the first
case ends the proof.

(2) The remaining case is k even with a non-trivial Euler class. As previously,
we deduce, from Proposition 2.3, a surjective model of S(ξ) → N as

ϕ : (∧V ⊗ ∧(e, z), D) → (∧V ⊗ ∧(e), d),

where |e| = |e| = k − 1, |z| = k, d|V = D|V = d, de = χ, De = −z + χ, Dz = 0,
ϕ(e) = e and ϕ(z) = 0. The kernel of ϕ is given by

(∧V ⊗ ∧(e))⊗ ∧+(z).

We quotient by the acyclic ideal generated by
(
ez,D(ez) = −z2 + χz

)
and get a

quasi-isomorphism between this kernel and (∧V ⊗ z,D), with the product z2 = χz.
More generally, the product rule of (∧V ⊗z,D) is given by (a⊗z) ·(b⊗z) = abχ⊗z,
as stated. �

The model for Th(ξ) displays the Thom class explicitly as z and, moreover,
the structure of the model as the minimal model (∧V, d) of N tensored with z is
precisely the Thom isomorphism. But notice that this is at the level of models rather
than simply for cohomology.

Our description of a model for the Thom space in fact holds for any spherical
fibration and immediately gives a result of Marcum and Randall [8]. Since the fiber
Sk−1 maps to a point with cofiber Sk, we have an induced map on cofibers,

MU: Sk → Th(ξ),

called the homotopy Thom class.

Corollary 2.5. If k is even and the rational Euler class is zero, then the Whitehead
product [MU,MU] ∈ π2k−1(Th(ξ)) is not trivial.

Proof. By Theorem 2.4, we have Th(ξ) 
Q ΣkN∨Sk and the homotopy Thom class
is simply the inclusion of the sphere Sk into the wedge. Hence, [MU,MU] = [ik, ik],
where ik is the identity map of Sk and, classically, [ik, ik] 	= 0 for k even. �
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3. Lie-model of the canonical map M ×M → Th(TM)

In the case of the tangent bundle of a manifold M , Theorem 2.4 takes the
following more explicit form.

Proposition 3.1. Let ξ = TM be the tangent bundle of a closed, connected, ori-
ented, nilpotent, m-dimensional manifold M of fundamental class [M ] ∈ Hn(M).

(1) If the rational Euler class of TM is zero, then

Th(TM) 
Q ΣmM ∨ Sm.

(2) If the rational Euler class of TM is non-zero, then

Th(TM) 
Q Σm(M\{p}) ∨ (Sm ∪[im,im] e
2m) 
Q Σm(M\{p}) ∨ Th(TSm),

where [im, im] is the self-Whitehead product of the identity map im of Sm

and TSm is the tangent bundle of Sm.

Proof. Only the second part requires proof, so we take m even and χ 	= 0. For the
tangent bundle, the Euler class χ is the product of the top cohomology class by the
Euler characteristic, i.e., χ = χ(M)ω, where ω is the cohomology class, Kronecker
dual to the fundamental class [M ]; see [1, Chapter VI, Corollary 12.5].

The minimal model (∧V, d) of M is quasi-isomorphic to the cdga

(A, d) = (∧V/
(
(∧V )≥m+1 ⊕ (ZV c)

)
, d),

with the induced differential, where ZV c denotes the complement of the cocycles in
degree m. Replacing (∧V, d) by (A, d) in the model of Theorem 2.4, we get as the
model of the Thom space (Q⊕ (A⊗ z), d) with product (a⊗ z) · (b⊗ z) = abχ⊗ z.
This means, for degree reasons, that there is only one non-trivial product,

(1⊗ z) · (1⊗ z) = χ(M)ω ⊗ z.

This Thom space model can also be written as

A⊗ z = (S ⊗ z)⊕ (1⊗ z)⊕ (ω ⊗ z) ,

where S is a supplementary subspace, in A+, of the vector subspace 〈ω〉 generated
by ω, i.e., S ⊕ 〈ω〉 = A+. In this direct sum, notice that the first term has no
non-trivial products and there are no cross products for degree reasons. The two
last terms are a model for a space with rational cohomology in degrees m and 2m
with cup product (1⊗z)2 = ω⊗z. This is a space with the same rational homotopy
type as Sm ∪[im,im] e

2m. To see that this is the Thom space of TSm, we have only
to observe that, in the case M = Sm, the corresponding cdga A ⊗ z reduces to
(1⊗ z)⊕ (ω ⊗ z). �

As Quillen shows in [11], differential Lie algebras give an algebraic approach to
rational homotopy theory for simply-connected spaces. For the concrete construc-
tions of Lie-models of products, fibrations and cofibrations, we refer the reader to
[13]. In particular, the minimal Lie-model of a simply-connected space X has the
form LX = (L(V ), ∂), where V = s−1(H∗(X)) is a desuspension of the reduced
homology and L(V ) denotes the free graded Lie algebra on V . The product X×X
has a minimal Lie-model LX×X = (L(s−1H∗(X × X)), ∂) that can be built from
the minimal Lie-model LX of X. Note also that a continuous map f : X → Y has
a Lie-model ϕ : (L(s−1H∗(X)), ∂) → (L(s−1H∗(Y )), ∂), and the map induced by ϕ
between the indecomposables of the Lie algebras is the map s−1H∗(f).
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From Proposition 1.2, we know that the map induced in homology by the pro-
jection ρ : M ×M → Th(TM) is given by ρ∗(a× b) = (−1)|a|(a � b)⊗ [M ].

Theorem 3.2. Let M be a closed, oriented, simply-connected manifold with fun-
damental class [M ] ∈ Hn(M). The minimal Lie-model of ρ : M ×M → Th(TM)
is given by

• (L(s−1H∗(M × M)), ∂)
L(s−1ρ∗)−−−−−−→ (L(s−1H∗(M) ⊗ [M ]), 0), if M is odd-

dimensional,

• (L(s−1H∗(M × M)), ∂)
L(s−1ρ∗)−−−−−−→ (L(s−1H∗(M) ⊗ [M ]), ∂), if M is even-

dimensional and where the differential ∂ is equal to zero on all generators
except for

∂(s−1[M ]⊗ [M ]) =
[
s−11⊗ [M ], s−11⊗ [M ]

]
.

Because we have a cofiber sequence F (M, 2) ↪→ M × M
ρ→ Th(TM), general

properties of Lie models lead us to the following conjecture. In Remark 4.3, we
observe that the conjecture holds for some fundamental examples.

Conjecture 3.3. With the notation of Theorem 3.2, we conjecture that a model
of F (M, 2) is given by (L(ker s−1ρ∗), ∂), where the differential ∂ is induced by the
differential of the Lie-model of M ×M .

Proof of Theorem 3.2. As the case M = S2 is detailed in Example 4.1, we may
suppose m ≥ 3.

If M is odd-dimensional, the Thom space Th(TM) is a suspension and has
minimal Lie-model LTh(TM) = (L(s−1H∗(M)⊗ [M ]), 0); see Proposition 3.1. If M
is even-dimensional, the Thom space Th(TM) is a wedge of a suspension and a
two-cell space whose attaching map is a Whitehead bracket; see Proposition 3.1.
Thus it has for minimal Lie-model the differential Lie algebra

LTh(TM) = (L(s−1H∗(M)⊗ [M ]), ∂)

described in the statement. The result is therefore a direct consequence of the
following claim.

Claim. Any linear map

s−1H∗(M ×M) −→ L≥2(s−1H∗(M)⊗ [M ])

is trivial, where L≥2 denotes the subspace of the free Lie algebra generated by
brackets of size greater than or equal to 2.

In order to prove this, we have only to determine the respective degrees. First,
we observe that the space s−1H∗(M ×M) is such that:

• the subspace of elements of degree 2m− 1 is of dimension 1,
• the other elements have degrees less than or equal to 2m− 3.

Furthermore, the space s−1H∗(M)⊗ [M ] is such that:

• the subspace of elements of degree m− 1 is of dimension 1,
• the other elements have degrees greater than or equal to m+ 1.

If m is odd, the elements of

• L2(s−1H∗(M)⊗ [M ]) are of degree greater than or equal to 2m,
• Lk(s−1H∗(M)⊗ [M ]) are of degree greater than or equal to (k−1)(m−1)+
m+ 1 = km− k + 2.
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If 2m− 1 = km− k + 2, then

m =
k − 3

k − 2
=

−1

k − 2
+ 1,

which is impossible.
If m is even, the only difference is that L2(s−1H∗(M) ⊗ [M ]) has elements of

degree 2m − 2, but there is no element of this degree in the domain of the map.
Thus the result follows. �

4. Examples

Example 4.1 (Spheres). We shall consider the odd- and even-dimensional cases
separately.

(1) Let M = Sm with m odd. Then the Thom space is Th(TM) = Sm ∨ S2m

and the Lie-model of ρ : M ×M → Th(TM) is given by

L(y, v, s(yv)) → L(z, e),

where ∂y = 0 = ∂v, ∂s(yv) = [y, v], ∂z = 0 = ∂e, ρ∗(y) = ρ∗(v) = z and
ρ∗(s(yv)) = [T ] (where [T ] is the fundamental class of (T, ∂T ) as in Proposition 1.2).
To see how the values for ρ∗ are determined, consider ρ∗(s(yv)). This class in the
homology of Sm × Sm is represented by [M ]× [M ]. Clearly, [M ] � [M ] = [M ] and
the inverse of the Thom isomorphism applied to [M ] is [T ] by the basic formula
U ∩ [T ] = [M ], where U ∈ Hm(T, ∂T ) is the Thom class. Note that ρ∗(∂s(yv)) =
[z, z] = 0 = ∂e since |z| = m− 1 is even.

(2) Let M = Sm with m even. Then the Thom space is Th(TM) = Sm∪[z,z] e
2m

and the Lie-model of ρ : M ×M → Th(TM) is given by

L(y, v, s(yv)) → L(z, e),

where ∂y = 0 = ∂v, ∂s(yv) = [y, v], ∂z = 0, ∂e = 1
2 [z, z], ρ∗(y) = ρ∗(v) = z and

ρ∗(s(yv)) = [T ]. Here, the 1
2 in the differential for e arises from the diagonal in the

associated coalgebra. Now, however, we have ρ∗(∂s(yv)) = [z, z] 	= 0, so we require
the correct ∂[T ]. Here is where we bring in the geometry of the Thom isomorphism.
Recall that in H∗(T, ∂T ), we have U = χ (where χ is the pullback of the Euler
class) and

U � U = χ � U = χ(M)ωM � U = 2ωT ,

where ωM , ωT are top cohomology classes Kronecker dual to the respective funda-
mental classes [M ], [T ]. Again the basic formula U ∩ [T ] = [M ] gives

〈ωM � U, [T ]〉 = 〈ωM , U ∩ [T ]〉 = 〈ωM , [M ]〉 = 1,

so we see that ωM � U = ωT . This calculation says that the Kronecker dual of
U � U has two descriptions: (1) e with ∂e = 1

2 [z, z]; (2) 2e = [T ], since e is

Kronecker dual to U � U = 2ωM � U which is Kronecker dual to 1
2 [T ]. Thus, we

have

ρ∗(∂s(yv)) = ρ∗([y, v]) = [z, z] = 2

(
1

2

)
[z, z] = ∂(2e) = ∂([T ]),

and ρ∗ is well defined.

Example 4.2. If M = CP2, the Thom space is

Th(TM) = Σm(CP2\{p}) ∨ S4 ∪[z,z] e
8
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and the Lie-model of ρ : M ×M → Th(TM) is given by

L(x, y, u, v, s(xu), s(xv), s(yu), s(yv)) → L(z, w, e),

where |x| = |u| = 1, |y| = |v| = |s(xu)| = |z| = 3, |s(xv)| = |s(yu)| = |w| = 5,
|s(yv)| = |e| = 7, ∂x = 0 = ∂u, ∂y = 1

2 [x, x], ∂v = 1
2 [u, u], and

∂s(xu) =[x, u],

∂s(xv) =[x, v] + [u, s(xu)],

∂s(yu) =[y, u] + [x, s(xu)],

∂s(yv) =[y, v] + [x, s(xv)] + [u, s(yu)] +
1

2
[s(xu), s(xu)],

with ∂z = 0 = ∂w, ∂e = 1
2 [z, z]. The map is given by

ρ∗(x) =ρ∗(u) = 0,

ρ∗(y) =ρ∗(v) = ρ∗(s(xu)) = z,

ρ∗(s(xv)) =ρ∗(s(yu)) = w,

ρ∗(s(yv)) =[T ].

Now here, χ(M) = 3, so [T ] = 3e and we have

ρ∗(∂s(yv)) =
3

2
[z, z] = 3 · 1

2
[z, z] = ∂(3e) = ∂([T ]).

Remark 4.3. In the case M = Sm, the Lie differential algebra (L(ker ρ∗), ∂) is
isomorphic to (L(α), 0), with |α| = m−1. It coincides with the integral description
F (M, 2) 
 Sm.

In the case M = CP2, we obtain, for (L(ker ρ∗), ∂),

L(x, u, ȳ, v̄, t),

where |x| = |u| = 1, |ȳ| = |v̄| = 3, |t| = 5, ȳ = y − s(xu), v̄ = v − s(xu) and
t = s(xv)− s(yu). Thus,

∂x =∂u = 0,

∂ȳ =
1

2
[x, x]− [x, u], ∂v̄ =

1

2
[u, u]− [x, u],

∂t =[x, v̄]− [u, ȳ].

Conjecture 3.3 on the model for F (M, 2) is then confirmed by comparing to the
model of Kř́ıž ([6]) for projective varieties.
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