Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hypergeometric type identities in the $ p$-adic setting and modular forms


Authors: Jenny G. Fuselier and Dermot McCarthy
Journal: Proc. Amer. Math. Soc. 144 (2016), 1493-1508
MSC (2010): Primary 11F33, 33C20; Secondary 11S80, 33E50
DOI: https://doi.org/10.1090/proc/12837
Published electronically: August 12, 2015
MathSciNet review: 3451227
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove hypergeometric type identities for a function defined in terms of quotients of the $ p$-adic gamma function. We use these identities to prove a supercongruence conjecture of Rodriguez-Villegas between a truncated $ _4F_3$ hypergeometric series and the Fourier coefficients of a certain weight four modular form.


References [Enhancements On Off] (What's this?)

  • [1] Scott Ahlgren and Ken Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212. MR 1739404 (2001c:11057), https://doi.org/10.1515/crll.2000.004
  • [2] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [3] Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181 (99d:11092)
  • [4] Rupam Barman and Neelam Saikia, $ p$-adic gamma function and the trace of Frobenius of elliptic curves, J. Number Theory 140 (2014), 181-195. MR 3181652, https://doi.org/10.1016/j.jnt.2014.01.026
  • [5] Rupam Barman and Neelam Saikia, Certain transformations for hypergeometric series in the $ p$-adic setting, Int. J. Number Theory 11 (2015), no. 2, 645-660. MR 3325441, https://doi.org/10.1142/S1793042115500359
  • [6] Ron Evans, Hypergeometric $ _3F_2(1/4)$ evaluations over finite fields and Hecke eigenforms, Proc. Amer. Math. Soc. 138 (2010), no. 2, 517-531. MR 2557169 (2011a:11217), https://doi.org/10.1090/S0002-9939-09-10091-6
  • [7] Jenny G. Fuselier, Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-Texas A&M University. MR 2710790
  • [8] Jenny G. Fuselier, Hypergeometric functions over $ \mathbb{F}_p$ and relations to elliptic curves and modular forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 109-123. MR 2550175 (2011c:11068), https://doi.org/10.1090/S0002-9939-09-10068-0
  • [9] Jenny G. Fuselier, Traces of Hecke operators in level 1 and Gaussian hypergeometric functions, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1871-1881. MR 3034414, https://doi.org/10.1090/S0002-9939-2012-11540-0
  • [10] Sharon Frechette, Ken Ono, and Matthew Papanikolas, Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not. 60 (2004), 3233-3262. MR 2096220 (2006a:11055), https://doi.org/10.1155/S1073792804132522
  • [11] John Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), no. 1, 77-101. MR 879564 (88e:11122), https://doi.org/10.2307/2000329
  • [12] Benedict H. Gross and Neal Koblitz, Gauss sums and the $ p$-adic $ \Gamma $-function, Ann. of Math. (2) 109 (1979), no. 3, 569-581. MR 534763 (80g:12015), https://doi.org/10.2307/1971226
  • [13] Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536 (93a:14009)
  • [14] Timothy Kilbourn, An extension of the Apéry number supercongruence, Acta Arith. 123 (2006), no. 4, 335-348. MR 2262248 (2007e:11049), https://doi.org/10.4064/aa123-4-3
  • [15] Neal Koblitz, $ p$-adic analysis: a short course on recent work, London Mathematical Society Lecture Note Series, vol. 46, Cambridge University Press, Cambridge-New York, 1980. MR 591682 (82c:12014)
  • [16] Neal Koblitz, Introduction to elliptic curves and modular forms, 2nd ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR 1216136 (94a:11078)
  • [17] Catherine Lennon, Arithmetic and analytic properties of finite field hypergeometric functions, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-Massachusetts Institute of Technology. MR 2982376
  • [18] Catherine Lennon, Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Amer. Math. Soc. 139 (2011), no. 6, 1931-1938. MR 2775369 (2012c:11260), https://doi.org/10.1090/S0002-9939-2010-10609-3
  • [19] Catherine Lennon, Trace formulas for Hecke operators, Gaussian hypergeometric functions, and the modularity of a threefold, J. Number Theory 131 (2011), no. 12, 2320-2351. MR 2832827, https://doi.org/10.1016/j.jnt.2011.05.005
  • [20] Eric Mortenson, Supercongruences for truncated $ _{n+1}\!F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. 133 (2005), no. 2, 321-330 (electronic). MR 2093051 (2005f:11080), https://doi.org/10.1090/S0002-9939-04-07697-X
  • [21] Dermot McCarthy, Extending Gaussian hypergeometric series to the $ p$-adic setting, Int. J. Number Theory 8 (2012), no. 7, 1581-1612. MR 2968943, https://doi.org/10.1142/S1793042112500844
  • [22] Dermot McCarthy, On a supercongruence conjecture of Rodriguez-Villegas, Proc. Amer. Math. Soc. 140 (2012), no. 7, 2241-2254. MR 2898688, https://doi.org/10.1090/S0002-9939-2011-11087-6
  • [23] Dermot McCarthy, Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl. 18 (2012), no. 6, 1133-1147. MR 3019189, https://doi.org/10.1016/j.ffa.2012.08.007
  • [24] Dermot McCarthy, The trace of Frobenius of elliptic curves and the $ p$-adic gamma function, Pacific J. Math. 261 (2013), no. 1, 219-236. MR 3037565, https://doi.org/10.2140/pjm.2013.261.219
  • [25] Dermot McCarthy and Matthew Papanikolas, A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform, arXiv:1205.1006.
  • [26] Fernando Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001) Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, 2003, pp. 223-231. MR 2019156 (2005b:11086)
  • [27] W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.
  • [28] M. Valentina Vega, Hypergeometric functions over finite fields and their relations to algebraic curves, Int. J. Number Theory 7 (2011), no. 8, 2171-2195. MR 2873147, https://doi.org/10.1142/S1793042111004976

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F33, 33C20, 11S80, 33E50

Retrieve articles in all journals with MSC (2010): 11F33, 33C20, 11S80, 33E50


Additional Information

Jenny G. Fuselier
Affiliation: Department of Mathematics and Computer Science, Drawer 31, High Point University, High Point, North Carolina 27268
Email: jfuselie@highpoint.edu

Dermot McCarthy
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79410-1042
Email: dermot.mccarthy@ttu.edu

DOI: https://doi.org/10.1090/proc/12837
Received by editor(s): July 16, 2014
Received by editor(s) in revised form: May 12, 2015
Published electronically: August 12, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society