Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the second order derivatives of solutions of a special Isaacs equation


Author: Jay Kovats
Journal: Proc. Amer. Math. Soc. 144 (2016), 1523-1533
MSC (2010): Primary 35B65, 35J60, 49N60, 49N70; Secondary 35J60
DOI: https://doi.org/10.1090/proc/12956
Published electronically: December 22, 2015
MathSciNet review: 3451229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate continuity and integrability properties of the second order derivatives of viscosity solutions of a certain uniformly elliptic Isaacs equation. We give sufficient and necessary conditions for continuity of the second order derivatives and give sufficient conditions for interior $ W^{2,p}$ regularity, $ 1<p<\infty $.


References [Enhancements On Off] (What's this?)

  • [CC95] Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007 (96h:35046)
  • [CC03] Xavier Cabré and Luis A. Caffarelli, Interior $ C^{2,\alpha }$ regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl. (9) 82 (2003), no. 5, 573-612 (English, with English and French summaries). MR 1995493 (2004f:35049), https://doi.org/10.1016/S0021-7824(03)00029-1
  • [CY00] Luis A. Caffarelli and Yu Yuan, A priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J. 49 (2000), no. 2, 681-695. MR 1793687 (2002b:35049), https://doi.org/10.1512/iumj.2000.49.1901
  • [Eva82] Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363. MR 649348 (83g:35038), https://doi.org/10.1002/cpa.3160350303
  • [FN93] W. H. Fleming and M. Nisio, Differential games for stochastic partial differential equations, Nagoya Math. J. 131 (1993), 75-107. MR 1238634 (94h:93074)
  • [FS89] W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J. 38 (1989), no. 2, 293-314. MR 997385 (90e:93089), https://doi.org/10.1512/iumj.1989.38.38015
  • [GT83] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [Ish89] Hitoshi Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1989), no. 1, 15-45. MR 973743 (89m:35070), https://doi.org/10.1002/cpa.3160420103
  • [Kov09] Jay Kovats, Value functions and the Dirichlet problem for Isaacs equation in a smooth domain, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4045-4076. MR 2500878 (2010c:49057), https://doi.org/10.1090/S0002-9947-09-04732-1
  • [Kov12] Jay Kovats, The minmax principle and $ W^{2,p}$ regularity for solutions of the simplest Isaacs equations, Proc. Amer. Math. Soc. 140 (2012), no. 8, 2803-2815. MR 2910767, https://doi.org/10.1090/S0002-9939-2012-11610-7
  • [Kry83] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75-108 (Russian). MR 688919 (85g:35046)
  • [Kry14a] N. V. Krylov, On the dynamic programming principle for uniformly nondegenerate stochastic differential games in domains and the Isaacs equations, Probab. Theory Related Fields 158 (2014), no. 3-4, 751-783. MR 3176364, https://doi.org/10.1007/s00440-013-0495-y
  • [Kry14b] N. V. Krylov, On regularity properties and approximations of value functions for stochastic differential games in domains, Ann. Probab. 42 (2014), no. 5, 2161-2196. MR 3262500, https://doi.org/10.1214/13-AOP848
  • [Lin86] Fang-Hua Lin, Second derivative $ L^p$-estimates for elliptic equations of nondivergent type, Proc. Amer. Math. Soc. 96 (1986), no. 3, 447-451. MR 822437 (88b:35058), https://doi.org/10.2307/2046592
  • [Nis88] Makiko Nisio, Stochastic differential games and viscosity solutions of Isaacs equations, Nagoya Math. J. 110 (1988), 163-184. MR 945913 (90b:93100)
  • [NV07] Nikolai Nadirashvili and Serge Vlăduţ, Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal. 17 (2007), no. 4, 1283-1296. MR 2373018 (2008m:35121), https://doi.org/10.1007/s00039-007-0626-7
  • [NV08] Nikolai Nadirashvili and Serge Vlăduţ, Singular viscosity solutions to fully nonlinear elliptic equations, J. Math. Pures Appl. (9) 89 (2008), no. 2, 107-113 (English, with English and French summaries). MR 2391642 (2009a:35080), https://doi.org/10.1016/j.matpur.2007.10.004
  • [NV11] Nikolai Nadirashvili and Serge Vlăduţ, Singular solutions of Hessian fully nonlinear elliptic equations, Adv. Math. 228 (2011), no. 3, 1718-1741. MR 2824567 (2012h:35077), https://doi.org/10.1016/j.aim.2011.06.030
  • [Roc70] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683 (43 #445)
  • [Tru89] Neil S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. 39 (1989), no. 3, 443-447. MR 995142 (90f:35038), https://doi.org/10.1017/S0004972700003361
  • [Yua01] Yu Yuan, A priori estimates for solutions of fully nonlinear special Lagrangian equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 2, 261-270 (English, with English and French summaries). MR 1808031 (2002e:35088), https://doi.org/10.1016/S0294-1449(00)00065-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B65, 35J60, 49N60, 49N70, 35J60

Retrieve articles in all journals with MSC (2010): 35B65, 35J60, 49N60, 49N70, 35J60


Additional Information

Jay Kovats
Affiliation: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901
Email: jkovats@fit.edu

DOI: https://doi.org/10.1090/proc/12956
Received by editor(s): September 30, 2014
Published electronically: December 22, 2015
Communicated by: Joachim Krieger
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society