Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Minimality and fiber sum decompositions of Lefschetz fibrations


Author: R. İnanç Baykur
Journal: Proc. Amer. Math. Soc. 144 (2016), 2275-2284
MSC (2010): Primary 57R17, 57R57
DOI: https://doi.org/10.1090/proc/12835
Published electronically: August 12, 2015
MathSciNet review: 3460185
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a short proof of a conjecture of Stipsicz on the minimality of fiber sums of Lefschetz fibrations, which was proved earlier by Usher. We then construct the first examples of genus $ g \geq 2$ Lefschetz fibrations on minimal symplectic 4-manifolds which, up to diffeomorphisms of the summands, admit unique decompositions as fiber sums.


References [Enhancements On Off] (What's this?)

  • [1] Denis Auroux, A stable classification of Lefschetz fibrations, Geom. Topol. 9 (2005), 203-217 (electronic). MR 2115673 (2005i:57032), https://doi.org/10.2140/gt.2005.9.203
  • [2] R. I. Baykur and M. Korkmaz, Small Lefschetz fibrations and exotic $ 4$-manifolds, preprint in preparation.
  • [3] H. Endo, I. Hasegawa, S. Kamada, and K. Tanaka, Charts, signatures, and stabilizations of Lefschetz fibrations, preprint; http://arxiv.org/abs/1403.7946.
  • [4] Ronald Fintushel and Ronald J. Stern, Families of simply connected 4-manifolds with the same Seiberg-Witten invariants, Topology 43 (2004), no. 6, 1449-1467. MR 2081432 (2005d:57044), https://doi.org/10.1016/j.top.2004.03.002
  • [5] Robert E. Gompf and András I. Stipsicz, $ 4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327 (2000h:57038)
  • [6] Mustafa Korkmaz, Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices 3 (2001), 115-128. MR 1810689 (2001m:57036), https://doi.org/10.1155/S107379280100006X
  • [7] Tian-Jun Li, Smoothly embedded spheres in symplectic $ 4$-manifolds, Proc. Amer. Math. Soc. 127 (1999), no. 2, 609-613. MR 1459135 (99c:57055), https://doi.org/10.1090/S0002-9939-99-04457-3
  • [8] T. J. Li and A. Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula, Math. Res. Lett. 2 (1995), no. 4, 453-471. MR 1355707 (96m:57052), https://doi.org/10.4310/MRL.1995.v2.n4.a6
  • [9] Tian-Jun Li, Symplectic Parshin-Arakelov inequality, Internat. Math. Res. Notices 18 (2000), 941-954. MR 1792283 (2001i:57038), https://doi.org/10.1155/S1073792800000490
  • [10] Tian-Jun Li, The Kodaira dimension of symplectic 4-manifolds, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 249-261. MR 2249257 (2007f:57051)
  • [11] Ivan Smith, Geometric monodromy and the hyperbolic disc, Q. J. Math. 52 (2001), no. 2, 217-228. MR 1838364 (2002c:57046), https://doi.org/10.1093/qjmath/52.2.217
  • [12] Yoshihisa Sato, The necessary condition on the fiber-sum decomposability of genus-2 Lefschetz fibrations, Osaka J. Math. 47 (2010), no. 4, 949-963. MR 2791568 (2012j:57052)
  • [13] András I. Stipsicz, Indecomposability of certain Lefschetz fibrations, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1499-1502. MR 1712877 (2001h:57029), https://doi.org/10.1090/S0002-9939-00-05681-1
  • [14] András I. Stipsicz, Singular fibers in Lefschetz fibrations on manifolds with $ b_2^+=1$, Topology Appl. 117 (2002), no. 1, 9-21. MR 1874001 (2002j:57048), https://doi.org/10.1016/S0166-8641(00)00105-X
  • [15] András I. Stipsicz, Chern numbers of certain Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1845-1851. MR 1641113 (2000j:57062), https://doi.org/10.1090/S0002-9939-99-05172-2
  • [16] András I. Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Res. Lett. 6 (1999), no. 3-4, 449-456. MR 1713143 (2000g:57046), https://doi.org/10.4310/MRL.1999.v6.n4.a7
  • [17] Clifford Henry Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), no. 2, 221-238. MR 1324704 (96a:57076), https://doi.org/10.4310/MRL.1995.v2.n2.a10
  • [18] Clifford H. Taubes, $ {\rm SW}\Rightarrow {\rm Gr}$: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845-918. MR 1362874 (97a:57033), https://doi.org/10.1090/S0894-0347-96-00211-1
  • [19] Michael Usher, The Gromov invariant and the Donaldson-Smith standard surface count, Geom. Topol. 8 (2004), 565-610. MR 2057774 (2005i:53120), https://doi.org/10.2140/gt.2004.8.565
  • [20] Michael Usher, Minimality and symplectic sums, Int. Math. Res. Not. , posted on (2006), Art. ID 49857, 17. MR 2250015 (2007h:53139), https://doi.org/10.1155/IMRN/2006/49857
  • [21] Michael Usher, Kodaira dimension and symplectic sums, Comment. Math. Helv. 84 (2009), no. 1, 57-85. MR 2466075 (2009j:57030), https://doi.org/10.4171/CMH/152

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57R17, 57R57

Retrieve articles in all journals with MSC (2010): 57R17, 57R57


Additional Information

R. İnanç Baykur
Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
Email: baykur@math.umass.edu

DOI: https://doi.org/10.1090/proc/12835
Received by editor(s): July 14, 2014
Received by editor(s) in revised form: January 26, 2015, and May 14, 2015
Published electronically: August 12, 2015
Communicated by: Martin Scharlemann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society