Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Operator-Lipschitz estimates for the singular value functional calculus

Authors: Fredrik Andersson, Marcus Carlsson and Karl-Mikael Perfekt
Journal: Proc. Amer. Math. Soc. 144 (2016), 1867-1875
MSC (2010): Primary 15A18, 15A60, 47A60; Secondary 15A16, 15A45, 47A30, 47A55, 47B10
Published electronically: September 11, 2015
MathSciNet review: 3460149
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a functional calculus for compact operators, acting on the singular values rather than the spectrum, which appears frequently in applied mathematics. Necessary and sufficient conditions for this singular value functional calculus to be Lipschitz-continuous with respect to the Hilbert-Schmidt norm are given. We also provide sharp constants.

References [Enhancements On Off] (What's this?)

  • [1] Aleksei Aleksandrov and Vladimir Peller, Functions of perturbed operators, C. R. Math. Acad. Sci. Paris 347 (2009), no. 9-10, 483-488 (English, with English and French summaries). MR 2576894 (2010m:47019),
  • [2] A.B. Aleksandrov, V.V. Peller, D.S. Potapov, and F.A. Sukochev,
    Functions of normal operators under perturbations,
    Advances in Mathematics, 226(6), 2011.
  • [3] Fredrik Andersson and Marcus Carlsson, Alternating projections on nontangential manifolds, Constr. Approx. 38 (2013), no. 3, 489-525. MR 3122280,
  • [4] Fredrik Andersson, Marcus Carlsson, Jean-Yves Tourneret, and Herwig Wendt, A new frequency estimation method for equally and unequally spaced data, IEEE Trans. Signal Process. 62 (2014), no. 21, 5761-5774. MR 3273530,
  • [5] Huzihiro Araki and Shigeru Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), no. 1, 89-96. MR 630332 (82j:46076)
  • [6] Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662 (98i:15003)
  • [7] M. Š. Birman and M. Z. Solomjak, Double Stieltjes operator integrals, Probl. Math. Phys., No. I, Spectral Theory and Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad, 1966, pp. 33-67 (Russian). MR 0209872 (35 #767b)
  • [8] Emmanuel J. Candès, Carlos A. Sing-Long, and Joshua D. Trzasko, Unbiased risk estimates for singular value thresholding and spectral estimators, IEEE Trans. Signal Process. 61 (2013), no. 19, 4643-4657. MR 3105401,
  • [9] Moody T. Chu, Robert E. Funderlic, and Robert J. Plemmons, Structured low rank approximation, Linear Algebra Appl. 366 (2003), 157-172. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000). MR 1987719 (2004e:15001),
  • [10] C. Ding, D. Sun, J. Sun, and K-C. Toh,
    Spectral operators of matrices,
    arXiv:1401.2269, 2014.
  • [11] Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz 20 (2008), no. 3, 224-242; English transl., St. Petersburg Math. J. 20 (2009), no. 3, 493-506. MR 2454458 (2009i:47047),
  • [12] M. Fazel, H. Hindi, and S. P. Boyd,
    A rank minimization heuristic with application to minimum order system approximation,
    American Control Conference, 2001. Proceedings of the 2001, volume 6, pages 4734-4739. IEEE, 2001.
  • [13] Nicholas J. Higham, Computing the nearest correlation matrix--a problem from finance, IMA J. Numer. Anal. 22 (2002), no. 3, 329-343. MR 1918653 (2003d:65037),
  • [14] Fuad Kittaneh, On Lipschitz functions of normal operators, Proc. Amer. Math. Soc. 94 (1985), no. 3, 416-418. MR 787884 (87b:47021),
  • [15] V. Larsson and C. Olsson,
    Convex envelopes for low rank approximation,
    Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 1-14. Springer, 2015.
  • [16] V. Larsson, C. Olsson, E. Bylow, and F. Kahl,
    Rank minimization with structured data patterns,
    Computer Vision-ECCV 2014, pages 250-265. Springer, 2014.
  • [17] H. Minkowski,
    Geometrie der zahlen,
  • [18] Denis Potapov and Fedor Sukochev, Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math. 207 (2011), no. 2, 375-389. MR 2892613,
  • [19] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52 (2010), no. 3, 471-501. MR 2680543 (2012a:90137),
  • [20] R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362 (98m:49001)
  • [21] Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149 (80k:47048)
  • [22] Thomas P. Wihler, On the Hölder continuity of matrix functions for normal matrices, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 91, 5. MR 2577861 (2010m:15037)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A18, 15A60, 47A60, 15A16, 15A45, 47A30, 47A55, 47B10

Retrieve articles in all journals with MSC (2010): 15A18, 15A60, 47A60, 15A16, 15A45, 47A30, 47A55, 47B10

Additional Information

Fredrik Andersson
Affiliation: Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden

Marcus Carlsson
Affiliation: Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden

Karl-Mikael Perfekt
Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Keywords: Lipschitz estimates, functional calculus, singular values, doubly substochastic matrices
Received by editor(s): March 16, 2015
Received by editor(s) in revised form: May 16, 2015
Published electronically: September 11, 2015
Communicated by: Pamela B. Gorkin
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society