Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The Bergman projection on fat Hartogs triangles: $ L^p$ boundedness


Authors: L. D. Edholm and J. D. McNeal
Journal: Proc. Amer. Math. Soc. 144 (2016), 2185-2196
MSC (2010): Primary 32W05
DOI: https://doi.org/10.1090/proc/12878
Published electronically: October 5, 2015
MathSciNet review: 3460177
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of pseudoconvex domains in $ \mathbb{C}^{n}$ generalizing the Hartogs triangle is considered. The $ L^p$ boundedness of the Bergman projection associated to these domains is established, for a restricted range of $ p$ depending on the ``fatness'' of domains. This range of $ p$ is shown to be sharp.


References [Enhancements On Off] (What's this?)

  • [1] Debraj Chakrabarti and Y. Zeytuncu, $ {L}^p$ mapping properties of the Bergman projection on the Hartogs triangle, (preprint) (2014).
  • [2] Liwei Chen, The $ {L}^p$ boundedness of the Bergman projection for a class of bounded Hartogs domains, (preprint) (2014).
  • [3] Željko Čučković and Jeffery D. McNeal, Special Toeplitz operators on strongly pseudoconvex domains, Rev. Mat. Iberoam. 22 (2006), no. 3, 851-866. MR 2320404 (2008b:47046), https://doi.org/10.4171/RMI/476
  • [4] John P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. MR 657241 (84a:32027), https://doi.org/10.2307/2007015
  • [5] L. D. Edholm, Bergman theory on fat Hartogs triangles, (preprint) (2015).
  • [6] Dariush Ehsani and Ingo Lieb, $ L^p$-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains, Math. Nachr. 281 (2008), no. 7, 916-929. MR 2431567 (2009h:32003), https://doi.org/10.1002/mana.200710649
  • [7] Gerald B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR 1357411 (96h:35001)
  • [8] Frank Forelli and Walter Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974/75), 593-602. MR 0357866 (50 #10332)
  • [9] Kenneth D. Koenig, On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian, Amer. J. Math. 124 (2002), no. 1, 129-197. MR 1879002 (2002m:32061)
  • [10] Steven G. Krantz and Marco M. Peloso, The Bergman kernel and projection on non-smooth worm domains, Houston J. Math. 34 (2008), no. 3, 873-950. MR 2448387 (2010i:32032)
  • [11] Loredana Lanzani and Elias M. Stein, Szegö and Bergman projections on non-smooth planar domains, J. Geom. Anal. 14 (2004), no. 1, 63-86. MR 2030575 (2004m:30063), https://doi.org/10.1007/BF02921866
  • [12] Loredana Lanzani and Elias M. Stein, The Bergman projection in $ L^p$ for domains with minimal smoothness, Illinois J. Math. 56 (2012), no. 1, 127-154 (2013). MR 3117022
  • [13] Jeffery D. McNeal, Boundary behavior of the Bergman kernel function in $ {\bf C}^2$, Duke Math. J. 58 (1989), no. 2, 499-512. MR 1016431 (91c:32017), https://doi.org/10.1215/S0012-7094-89-05822-5
  • [14] Jeffery D. McNeal, The Bergman projection as a singular integral operator, J. Geom. Anal. 4 (1994), no. 1, 91-103. MR 1274139 (95b:32039), https://doi.org/10.1007/BF02921594
  • [15] Jeffery D. McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), no. 1, 177-199. MR 1257282 (94k:32037), https://doi.org/10.1215/S0012-7094-94-07307-9
  • [16] A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő kernels in $ {\bf C}^2$, Ann. of Math. (2) 129 (1989), no. 1, 113-149. MR 979602 (90g:32028), https://doi.org/10.2307/1971487
  • [17] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), no. 3, 695-704. MR 0450623 (56 #8916)
  • [18] Walter Rudin, Function theory in the unit ball of $ {\bf C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594 (82i:32002)
  • [19] Yunus E. Zeytuncu, $ L^p$ regularity of weighted Bergman projections, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2959-2976. MR 3034455, https://doi.org/10.1090/S0002-9947-2012-05686-8
  • [20] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32W05

Retrieve articles in all journals with MSC (2010): 32W05


Additional Information

L. D. Edholm
Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio
Email: edholm@math.ohio-state.edu

J. D. McNeal
Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio
Email: mcneal@math.ohio-state.edu

DOI: https://doi.org/10.1090/proc/12878
Received by editor(s): February 25, 2015
Received by editor(s) in revised form: June 26, 2015
Published electronically: October 5, 2015
Additional Notes: The research of the second author was partially supported by a National Science Foundation grant.
Communicated by: Franc Forstneric
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society