Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Probabilistic estimates for tensor products of random vectors


Authors: David Alonso-Gutiérrez, Markus Passenbrunner and Joscha Prochno
Journal: Proc. Amer. Math. Soc. 144 (2016), 2133-2148
MSC (2010): Primary 46B09, 46B07, 46B28, 46B45
DOI: https://doi.org/10.1090/proc/12883
Published electronically: October 5, 2015
MathSciNet review: 3460173
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some probabilistic estimates for tensor products of random vectors, generalizing results that were obtained by Gordon, Litvak, Schütt, and Werner [Ann. Probab., 30(4):1833-1853, 2002], and Prochno and Riemer [Houst. J. Math., 39(4):1301-1311, 2013]. As an application we obtain embeddings of certain matrix spaces into $ L_1$.


References [Enhancements On Off] (What's this?)

  • [1] David Alonso-Gutiérrez, Sören Christensen, Markus Passenbrunner, and Joscha Prochno, On the distribution of random variables corresponding to Musielak-Orlicz norms, Studia Math. 219 (2013), no. 3, 269-287. MR 3145554, https://doi.org/10.4064/sm219-3-6
  • [2] David Alonso-Gutiérrez and Joscha Prochno, Estimating support functions of random polytopes via Orlicz norms, Discrete Comput. Geom. 49 (2013), no. 3, 558-588. MR 3038530, https://doi.org/10.1007/s00454-012-9468-7
  • [3] D. Alonso-Gutiérrez and J. Prochno, Mean width of random perturbations of random polytopes, preprint, (2013).
  • [4] David Alonso-Gutiérrez and Joscha Prochno, On the Gaussian behavior of marginals and the mean width of random polytopes, Proc. Amer. Math. Soc. 143 (2015), no. 2, 821-832. MR 3283668, https://doi.org/10.1090/S0002-9939-2014-12401-4
  • [5] Jean Bretagnolle and Didier Dacunha-Castelle, Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces $ L^{p}$, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437-480 (French). MR 0265930 (42 #839)
  • [6] Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Geometry of spaces between polytopes and related zonotopes, Bull. Sci. Math. 126 (2002), no. 9, 733-762. MR 1941083 (2003i:52006), https://doi.org/10.1016/S0007-4497(02)01139-9
  • [7] Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Orlicz norms of sequences of random variables, Ann. Probab. 30 (2002), no. 4, 1833-1853. MR 1944007 (2003m:60009), https://doi.org/10.1214/aop/1039548373
  • [8] Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Minima of sequences of Gaussian random variables, C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 445-448 (English, with English and French summaries). MR 2135327 (2006j:60019), https://doi.org/10.1016/j.crma.2005.02.003
  • [9] Yehoram Gordon, Alexander E. Litvak, Carsten Schütt, and Elisabeth Werner, Uniform estimates for order statistics and Orlicz functions, Positivity 16 (2012), no. 1, 1-28. MR 2892571, https://doi.org/10.1007/s11117-010-0107-3
  • [10] M. A. Krasnoselskiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. MR 0126722 (23 #A4016)
  • [11] Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), no. 1, 91-106. MR 809774 (87h:46042)
  • [12] Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory. II, Studia Math. 95 (1989), no. 2, 141-154. MR 1038501 (91e:46027)
  • [13] Richard Lechner, Markus Passenbrunner, and Joscha Prochno, Uniform estimates for averages of order statistics of matrices, Electron. Commun. Probab. 20 (2015), no. 27, 12. MR 3327866, https://doi.org/10.1214/ECP.v20-3992
  • [14] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I,: Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92., Springer-Verlag, Berlin-New York, 1977. MR 0500056 (58 #17766)
  • [15] Joscha Prochno, A combinatorial approach to Musielak-Orlicz spaces, Banach J. Math. Anal. 7 (2013), no. 1, 132-141. MR 3004272, https://doi.org/10.15352/bjma/1358864554
  • [16] Joscha Prochno, Musielak-Orlicz spaces that are isomorphic to subspaces of $ {L}_1$, Ann. Funct. Anal. 6 (2015), no. 1.
  • [17] Joscha Prochno and Stiene Riemer, On the maximum of random variables on product spaces, Houston J. Math. 39 (2013), no. 4, 1301-1311. MR 3164717
  • [18] Joscha Prochno and Carsten Schütt, Combinatorial inequalities and subspaces of $ L_1$, Studia Math. 211 (2012), no. 1, 21-39. MR 2990557, https://doi.org/10.4064/sm211-1-2
  • [19] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700 (92e:46059)
  • [20] Y. Raynaud and C. Schütt, Some results on symmetric subspaces of $ L_1$, Studia Math. 89 (1988), no. 1, 27-35. MR 951082 (89g:46057)
  • [21] Gideon Schechtman, Matrix subspaces of $ L_1$, Studia Math. 215 (2013), no. 3, 281-285. MR 3080783, https://doi.org/10.4064/sm215-3-5
  • [22] Carsten Schütt, Lorentz spaces that are isomorphic to subspaces of $ L^1$, Trans. Amer. Math. Soc. 314 (1989), no. 2, 583-595. MR 974527 (89m:46057), https://doi.org/10.2307/2001398
  • [23] Carsten Schütt, On the embedding of $ 2$-concave Orlicz spaces into $ L^1$, Studia Math. 113 (1995), no. 1, 73-80. MR 1315523 (95k:46033)
  • [24] Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774 (90k:46039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B09, 46B07, 46B28, 46B45

Retrieve articles in all journals with MSC (2010): 46B09, 46B07, 46B28, 46B45


Additional Information

David Alonso-Gutiérrez
Affiliation: Departament de Matemàtiques, Universitat Jaume I, Campus de Riu Sec, E12071 Castelló de la Plana, Spain
Email: alonsod@uji.es

Markus Passenbrunner
Affiliation: Institute of Analysis, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
Email: markus.passenbrunner@jku.at

Joscha Prochno
Affiliation: Institute of Analysis, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
Address at time of publication: Department of Mathematics, University of Hull, Robert Blackburn Building, Hull, HU6 7RX, United Kingdom
Email: j.prochno@hull.ac.uk

DOI: https://doi.org/10.1090/proc/12883
Keywords: Orlicz function, Orlicz norm, random vector, tensor product
Received by editor(s): April 29, 2014
Received by editor(s) in revised form: June 10, 2015
Published electronically: October 5, 2015
Additional Notes: The first author was partially supported by Instituto de Matemáticas y Aplicaciones de Castellón, MINECO project MTM2013-42105-P, and BANCAJA project P1-1B2014-35
The second author was supported by the Austrian Science Fund, FWF P23987 and P27723
The third author was supported by the Austrian Science Fund, FWFM 1628000.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society