Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Morita equivalence classes of $ 2$-blocks of defect three


Author: Charles W. Eaton
Journal: Proc. Amer. Math. Soc. 144 (2016), 1961-1970
MSC (2010): Primary 20C20
DOI: https://doi.org/10.1090/proc/12886
Published electronically: October 14, 2015
MathSciNet review: 3460159
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete description of the Morita equivalence classes of blocks with elementary abelian defect groups of order $ 8$ and of the derived equivalences between them. A consequence is the verification of Broué's abelian defect group conjecture for these blocks. It also completes the classification of Morita and derived equivalence classes of $ 2$-blocks of defect at most three defined over a suitable field.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Alperin, Local representation theory, Modular representations as an introduction to the local representation theory of finite groups, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. MR 860771 (87i:20002)
  • [2] J. L. Alperin, Projective modules for $ {\rm SL}(2,\,2^{n})$, J. Pure Appl. Algebra 15 (1979), no. 3, 219-234. MR 537496 (80e:20012), https://doi.org/10.1016/0022-4049(79)90017-3
  • [3] Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134 (89b:20001)
  • [4] Richard Brauer, On groups whose order contains a prime number to the first power. I, Amer. J. Math. 64 (1942), 401-420. MR 0006537 (4,1e)
  • [5] Richard Brauer, On groups whose order contains a prime number to the first power. II, Amer. J. Math. 64 (1942), 421-440. MR 0006538 (4,2a)
  • [6] Michel Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92 (French). MR 1051243 (91i:20006)
  • [7] Michel Broué and Lluís Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), no. 2, 117-128. MR 558864 (81d:20011), https://doi.org/10.1007/BF01392547
  • [8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. MR 827219 (88g:20025)
  • [9] David A. Craven, Charles W. Eaton, Radha Kessar, and Markus Linckelmann, The structure of blocks with a Klein four defect group, Math. Z. 268 (2011), no. 1-2, 441-476. MR 2805443 (2012f:20029), https://doi.org/10.1007/s00209-010-0679-4
  • [10] David A. Craven and Raphaël Rouquier, Perverse equivalences and Broué's conjecture, Adv. Math. 248 (2013), 1-58. MR 3107506, https://doi.org/10.1016/j.aim.2013.07.010
  • [11] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20-48. MR 0200355 (34 #251)
  • [12] E. C. Dade, Block extensions, Illinois J. Math. 17 (1973), 198-272. MR 0327884 (48 #6226)
  • [13] Charles W. Eaton, Radha Kessar, Burkhard Külshammer, and Benjamin Sambale, 2-blocks with abelian defect groups, Adv. Math. 254 (2014), 706-735. MR 3161112, https://doi.org/10.1016/j.aim.2013.12.024
  • [14] Charles W. Eaton, Burkhard Külshammer, and Benjamin Sambale, 2-blocks with minimal nonabelian defect groups II, J. Group Theory 15 (2012), no. 3, 311-321. MR 2920888, https://doi.org/10.1515/jgt.2011.110
  • [15] K. Erdmann, Algebras and dihedral defect groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 88-114. MR 872252 (88a:20020), https://doi.org/10.1112/plms/s3-54.1.88
  • [16] Karin Erdmann, Algebras and quaternion defect groups. I, II, Math. Ann. 281 (1988), no. 4, 545-560, 561-582. MR 958259 (89j:20005), https://doi.org/10.1007/BF01456838
  • [17] Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107 (91c:20016)
  • [18] Paul Fong, On decomposition numbers of $ J_{1}$ and $ R(q)$, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 415-422. MR 0357578 (50 #10046)
  • [19] H. Gollan and T. Okuyama, Derived equivalences for the smallest Janko group, preprint (1997).
  • [20] I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423 (57 #417)
  • [21] Radha Kessar, Shigeo Koshitani, and Markus Linckelmann, Conjectures of Alperin and Broué for 2-blocks with elementary abelian defect groups of order 8, J. Reine Angew. Math. 671 (2012), 85-130. MR 2983198
  • [22] Shigeo Koshitani and Burkhard Külshammer, A splitting theorem for blocks, Osaka J. Math. 33 (1996), no. 2, 343-346. MR 1416052 (97g:20013)
  • [23] Shigeo Koshitani, Jürgen Müller, and Felix Noeske, Broué's abelian defect group conjecture holds for the sporadic simple Conway group $ {\mathsf {Co}}_3$, J. Algebra 348 (2011), 354-380. MR 2852247 (2012h:20028), https://doi.org/10.1016/j.jalgebra.2011.10.001
  • [24] Burkhard Külshammer, On the structure of block ideals in group algebras of finite groups, Comm. Algebra 8 (1980), no. 19, 1867-1872. MR 588449 (82c:20023), https://doi.org/10.1080/00927878008822550
  • [25] Burkhard Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), no. 1, 147-168. MR 768092 (86c:20015), https://doi.org/10.1080/00927878508823154
  • [26] Burkhard Külshammer, Morita equivalent blocks in Clifford theory of finite groups, Astérisque 181-182 (1990), 209-215. MR 1051250 (91d:20009)
  • [27] Burkhard Külshammer and Lluís Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), no. 1, 17-71. MR 1069239 (91i:20009), https://doi.org/10.1007/BF01233419
  • [28] Peter Landrock, On the number of irreducible characters in a $ 2$-block, J. Algebra 68 (1981), no. 2, 426-442. MR 608543 (82e:20011), https://doi.org/10.1016/0021-8693(81)90272-6
  • [29] Peter Landrock and Gerhard O. Michler, Principal $ 2$-blocks of the simple groups of Ree type, Trans. Amer. Math. Soc. 260 (1980), no. 1, 83-111. MR 570780 (81h:20013), https://doi.org/10.2307/1999877
  • [30] Markus Linckelmann, The source algebras of blocks with a Klein four defect group, J. Algebra 167 (1994), no. 3, 821-854. MR 1287072 (95h:20014), https://doi.org/10.1006/jabr.1994.1214
  • [31] Markus Linckelmann, The isomorphism problem for cyclic blocks and their source algebras, Invent. Math. 125 (1996), no. 2, 265-283. MR 1395720 (97h:20010), https://doi.org/10.1007/s002220050075
  • [32] Andrei Marcus, Derived equivalences and the abelian defect group conjecture, Proceedings of the International Conference on Modules and Representation Theory, Presa Univ. Clujeană, Cluj-Napoca, 2009, pp. 111-131. MR 2603208 (2011e:20013)
  • [33] T. Okuyama, Some examples of derived equivalent blocks of finite groups, preprint (1997).
  • [34] Lluís Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), no. 2, 265-292. MR 607966 (82d:20015), https://doi.org/10.1007/BF01261873
  • [35] Lluís Puig, Pointed groups and construction of modules, J. Algebra 116 (1988), no. 1, 7-129. MR 944149 (89e:20024), https://doi.org/10.1016/0021-8693(88)90195-0
  • [36] Lluis Puig, Source algebras of $ p$-central group extensions, J. Algebra 235 (2001), no. 1, 359-398. MR 1807669 (2001k:20006), https://doi.org/10.1006/jabr.2000.8474
  • [37] Rimhak Ree, A family of simple groups associated with the simple Lie algebra of type $ (G_{2})$, Amer. J. Math. 83 (1961), 432-462. MR 0138680 (25 #2123)
  • [38] Jeremy Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3) 72 (1996), no. 2, 331-358. MR 1367082 (97b:20011), https://doi.org/10.1112/plms/s3-72.2.331
  • [39] Raphaël Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, Groups '93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 512-523. MR 1337293 (96h:20021), https://doi.org/10.1017/CBO9780511629297.017
  • [40] Benjamin Sambale, 2-blocks with minimal nonabelian defect groups, J. Algebra 337 (2011), 261-284. MR 2796075 (2012d:20019), https://doi.org/10.1016/j.jalgebra.2011.02.006
  • [41] Jacques Thévenaz, $ G$-algebras and modular representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. MR 1365077 (96j:20017)
  • [42] Harold N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 0197587 (33 #5752)
  • [43] Atumi Watanabe, On nilpotent blocks of finite groups, J. Algebra 163 (1994), no. 1, 128-134. MR 1257309 (94m:20034), https://doi.org/10.1006/jabr.1994.1008

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C20

Retrieve articles in all journals with MSC (2010): 20C20


Additional Information

Charles W. Eaton
Affiliation: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
Email: charles.eaton@manchester.ac.uk

DOI: https://doi.org/10.1090/proc/12886
Received by editor(s): September 30, 2014
Received by editor(s) in revised form: January 24, 2015, March 26, 2015, and June 25, 2015
Published electronically: October 14, 2015
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society