Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maximal regularity: Positive counterexamples on UMD-Banach lattices and exact intervals for the negative solution of the extrapolation problem
HTML articles powered by AMS MathViewer

by Stephan Fackler PDF
Proc. Amer. Math. Soc. 144 (2016), 2015-2028 Request permission

Abstract:

Using methods from Banach space theory, we prove two new structural results on maximal regularity. The first says that there exist positive bounded analytic semigroups on UMD-Banach lattices; namely, $\ell _p(\ell _q)$ for $p \neq q \in (1, \infty )$, without maximal regularity. In the second result we show that the extrapolation problem for maximal regularity behaves in the worst possible way: for every interval $I \subset (1, \infty )$ with $2 \in I$ there exists a family of consistent bounded analytic semigroups $(T_p(z))_{z \in \Sigma _{\pi /2}}$ on $L_p(\mathbb {R})$ such that $(T_p(z))$ has maximal regularity if and only if $p \in I$.
References
  • Wolfgang Arendt and Shangquan Bu, Tools for maximal regularity, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 317–336. MR 1972141, DOI 10.1017/S0305004102006345
  • Donald L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 233–269. MR 1863694, DOI 10.1016/S1874-5849(01)80008-5
  • Robert Denk, Matthias Hieber, and Jan PrĂŒss, $\scr R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), no. 788, viii+114. MR 2006641, DOI 10.1090/memo/0788
  • Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
  • Stephan Fackler, “ Regularity Properties of Sectorial Operators: Counterexamples and Open Problems," in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, ed. Wolfgang Arendt, Ralph Chill, and Yuri Tomilov, 171-197 (BirkhĂ€user Verlag, 2015).
  • Stephan Fackler, An explicit counterexample for the $L^p$-maximal regularity problem, C. R. Math. Acad. Sci. Paris 351 (2013), no. 1-2, 53–56 (English, with English and French summaries). MR 3019762, DOI 10.1016/j.crma.2013.01.013
  • Stephan Fackler, Regularity of semigroups via the asymptotic behaviour at zero, Semigroup Forum 87 (2013), no. 1, 1–17. MR 3079770, DOI 10.1007/s00233-013-9466-y
  • Stephan Fackler, The Kalton-Lancien theorem revisited: maximal regularity does not extrapolate, J. Funct. Anal. 266 (2014), no. 1, 121–138. MR 3121724, DOI 10.1016/j.jfa.2013.09.006
  • Nigel Kalton, Applications of Banach space theory to sectorial operators, Recent progress in functional analysis (Valencia, 2000) North-Holland Math. Stud., vol. 189, North-Holland, Amsterdam, 2001, pp. 61–74. MR 1861747, DOI 10.1016/S0304-0208(01)80036-0
  • Nigel J. Kalton and Gilles Lancien, A solution to the problem of $L^p$-maximal regularity, Math. Z. 235, no. 3 (2000), 559–568.
  • Peer C. Kunstmann and Lutz Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959, DOI 10.1007/978-3-540-44653-8_{2}
  • Jan PrĂŒss, Maximal regularity for evolution equations in $L_p$-spaces, Conf. Semin. Mat. Univ. Bari 285 (2002), 1–39 (2003). MR 1988408
  • JosĂ© L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Probability and Banach spaces (Zaragoza, 1985) Lecture Notes in Math., vol. 1221, Springer, Berlin, 1986, pp. 195–222. MR 875011, DOI 10.1007/BFb0099115
  • Luciano de Simon, Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205–223 (Italian). MR 176192
  • Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
  • Alberto Venni, A counterexample concerning imaginary powers of linear operators, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., vol. 1540, Springer, Berlin, 1993, pp. 381–387. MR 1225830, DOI 10.1007/BFb0085493
  • Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47D06, 35B65, 46B15
  • Retrieve articles in all journals with MSC (2010): 47D06, 35B65, 46B15
Additional Information
  • Stephan Fackler
  • Affiliation: Institute of Applied Analysis, University of Ulm, Helmholtzstr. 18, 89069 Ulm, Germany
  • MR Author ID: 1008455
  • Email: stephan.fackler@uni-ulm.de
  • Received by editor(s): October 8, 2014
  • Received by editor(s) in revised form: May 20, 2015
  • Published electronically: January 20, 2016
  • Additional Notes: The author was supported by a scholarship of the “Landesgraduiertenfarderung Baden-Wattemberg”.
  • Communicated by: Marius Junge
  • © Copyright 2016 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 144 (2016), 2015-2028
  • MSC (2010): Primary 47D06; Secondary 35B65, 46B15
  • DOI: https://doi.org/10.1090/proc/13012
  • MathSciNet review: 3460163