Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Randomized Sharkovsky-type results and random subharmonic solutions of differential inclusions


Authors: Jan Andres and Paweł Barbarski
Journal: Proc. Amer. Math. Soc. 144 (2016), 1971-1983
MSC (2010): Primary 37H10, 47H40; Secondary 37E05, 37E15, 47H04
DOI: https://doi.org/10.1090/proc/13014
Published electronically: January 26, 2016
MathSciNet review: 3460160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two multivalued deterministic versions of the celebrated Sharkovsky cycle coexistence theorem are randomized in terms of very general random periodic orbits. It is also shown that nontrivial subharmonics of scalar random upper-Carathéodory differential inclusions imply the coexistence of random subharmonics of all orders.


References [Enhancements On Off] (What's this?)

  • [1] J. Andres, Randomization of Sharkovskii-type theorems, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1385-1395, Erratum, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3733-3734.
  • [2] Jan Andres, Tomáš Fürst, and Karel Pastor, Period two implies all periods for a class of ODEs: a multivalued map approach, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3187-3191. MR 2322749 (2008e:34021), https://doi.org/10.1090/S0002-9939-07-08885-5
  • [3] Jan Andres, Tomáš Fürst, and Karel Pastor, Full analogy of Sharkovsky's theorem for lower semicontinuous maps, J. Math. Anal. Appl. 340 (2008), no. 2, 1132-1144. MR 2390917 (2009h:37086), https://doi.org/10.1016/j.jmaa.2007.09.046
  • [4] Jan Andres, Tomáš Fürst, and Karel Pastor, Sharkovskii's theorem, differential inclusions, and beyond, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 149-168. MR 2512960 (2010e:34016)
  • [5] Jan Andres and Lech Górniewicz, Topological fixed point principles for boundary value problems, Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003. MR 1998968 (2005a:47102)
  • [6] Jan Andres and Lech Górniewicz, Random topological degree and random differential inclusions, Topol. Methods Nonlinear Anal. 40 (2012), no. 2, 337-358. MR 3074469
  • [7] Jan Andres, Karel Pastor, and Pavla Šnyrychová, A multivalued version of Sharkovskiĭ's theorem holds with at most two exceptions, J. Fixed Point Theory Appl. 2 (2007), no. 1, 153-170. MR 2336505 (2008j:37076), https://doi.org/10.1007/s11784-007-0029-2
  • [8] Paweł Barbarski, The Sharkovskiĭ theorem for spaces of measurable functions, J. Math. Anal. Appl. 373 (2011), no. 2, 414-421. MR 2720692 (2012a:37075), https://doi.org/10.1016/j.jmaa.2010.07.033
  • [9] Ismat Beg and Mujahid Abbas, Periodic points of random multivalued operators, Nonlinear Stud. 19 (2012), no. 1, 87-92. MR 2932799
  • [10] Ismat Beg, Mujahid Abbas, and Akbar Azam, Periodic fixed points of random operators, Ann. Math. Inform. 37 (2010), 39-49. MR 2753025 (2011k:47102)
  • [11] Chunrong Feng and Huaizhong Zhao, Random periodic solutions of SPDEs via integral equations and Wiener-Sobolev compact embedding, J. Funct. Anal. 262 (2012), no. 10, 4377-4422. MR 2900470, https://doi.org/10.1016/j.jfa.2012.02.024
  • [12] Chunrong Feng, Huaizhong Zhao, and Bo Zhou, Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations 251 (2011), no. 1, 119-149. MR 2793266 (2012d:60164), https://doi.org/10.1016/j.jde.2011.03.019
  • [13] Lech Górniewicz, Topological fixed point theory of multivalued mappings, 2nd ed., Topological Fixed Point Theory and Its Applications, vol. 4, Springer, Dordrecht, 2006. MR 2238622 (2007f:58014)
  • [14] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MR 0367142 (51 #3384)
  • [15] Shouchuan Hu and Nikolas S. Papageorgiou, Handbook of multivalued analysis. Vol. I, Mathematics and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, 1997. Theory. MR 1485775 (98k:47001)
  • [16] Marc Klünger, Periodicity and Sharkovsky's theorem for random dynamical systems, Stoch. Dyn. 1 (2001), no. 3, 299-338. MR 1859009 (2002g:37064), https://doi.org/10.1142/S0219493701000199
  • [17] S. J. Leese, Multifunctions of Souslin type, Bull. Austral. Math. Soc. 11 (1974), 395-411. MR 0417365 (54 #5418a)
  • [18] Franco Obersnel and Pierpaolo Omari, Period two implies chaos for a class of ODEs, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2055-2058 (electronic). MR 2299480 (2008a:37026), https://doi.org/10.1090/S0002-9939-07-08700-X
  • [19] Marina Pireddu, Period two implies chaos for a class of ODEs: a dynamical system approach, Rend. Istit. Mat. Univ. Trieste 41 (2009), 43-54 (2010). MR 2676964 (2011f:37061)
  • [20] A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Proceedings of the Conference ``Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'' (Murcia, 1994), 1995, pp. 1263-1273. Translated from the Russian [Ukrain. Mat. Zh. 16 (1964), no. 1, 61-71; MR0159905 (28 #3121)] by J. Tolosa. MR 1361914 (96j:58058), https://doi.org/10.1142/S0218127495000934
  • [21] Stanisław Sedziwy, Periodic solutions of scalar differential equations without uniqueness, Boll. Unione Mat. Ital. (9) 2 (2009), no. 2, 445-448. MR 2537280
  • [22] Huaizhong Zhao and Zuo-Huan Zheng, Random periodic solutions of random dynamical systems, J. Differential Equations 246 (2009), no. 5, 2020-2038. MR 2494697 (2010c:37121), https://doi.org/10.1016/j.jde.2008.10.011
  • [23] Hicham Zmarrou and Ale Jan Homburg, Dynamics and bifurcations of random circle diffeomorphisms, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 2-3, 719-731. MR 2425065 (2009k:37092), https://doi.org/10.3934/dcdsb.2008.10.719

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37H10, 47H40, 37E05, 37E15, 47H04

Retrieve articles in all journals with MSC (2010): 37H10, 47H40, 37E05, 37E15, 47H04


Additional Information

Jan Andres
Affiliation: Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
Email: jan.andres@upol.cz

Paweł Barbarski
Affiliation: Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
Email: barbarski.pawel@gmail.com

DOI: https://doi.org/10.1090/proc/13014
Keywords: Randomization, Sharkovsky's Theorem, multivalued maps, selection theorems, Suslin space, Suslin family, random operators, random orbits, random differential inclusions, subharmonic solutions, Poincar{\'e} operator
Received by editor(s): May 7, 2015
Published electronically: January 26, 2016
Additional Notes: The work of the first author was supported by the grant 14-06958S “Singularities and impulses in boundary value problems for nonlinear ordinary differential equations” of the Grant Agency of the Czech Republic and the work of the second author by the Foundation for the Polish Science grant MPD/2009-3/4.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society