Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nevanlinna counting function and pull-back measure


Authors: O. El-Fallah and K. Kellay
Journal: Proc. Amer. Math. Soc. 144 (2016), 2559-2564
MSC (2010): Primary 30C80, 47B33, 47B10, 47A15
DOI: https://doi.org/10.1090/proc/12913
Published electronically: October 21, 2015
MathSciNet review: 3477072
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an explicit relation between the Nevanlinna counting function of an analytic self-map of the unit disk and its pull-back measure. This gives a simple proof of the results of Lefévre, Li, Queffélec and Rodrìguez-Piazza (2011).


References [Enhancements On Off] (What's this?)

  • [1] Christopher J. Bishop, Orthogonal functions in $ H^\infty $, Pacific J. Math. 220 (2005), no. 1, 1-31. MR 2195060 (2006j:30092), https://doi.org/10.2140/pjm.2005.220.1
  • [2] E. Essén, D. F. Shea, and C. S. Stanton, A value-distribution criterion for the class $ L\log L$ and some related questions, Ann. Inst. Fourier (Grenoble), 35 (1985) 125-150.
  • [3] Pascal Lefèvre, Daniel Li, Hervé Queffélec, and Luis Rodríguez-Piazza, Nevanlinna counting function and Carleson function of analytic maps, Math. Ann. 351 (2011), no. 2, 305-326. MR 2836660 (2012f:47065), https://doi.org/10.1007/s00208-010-0596-1
  • [4] Pascal Lefèvre, Daniel Li, Hervé Queffélec, and Luis Rodríguez-Piazza, Some examples of compact composition operators on $ H^2$, J. Funct. Anal. 255 (2008), no. 11, 3098-3124. MR 2464571 (2009j:47044), https://doi.org/10.1016/j.jfa.2008.06.027
  • [5] Barbara D. MacCluer, Compact composition operators on $ H^p(B_N)$, Michigan Math. J. 32 (1985), no. 2, 237-248. MR 783578 (86g:47037), https://doi.org/10.1307/mmj/1029003191
  • [6] Walter Rudin, A generalization of a theorem of Frostman, Math. Scand 21 (1967), 136-143 (1968). MR 0235151 (38 #3463)
  • [7] Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406 (94k:47049)
  • [8] Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375-404. MR 881273 (88c:47058), https://doi.org/10.2307/1971314

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C80, 47B33, 47B10, 47A15

Retrieve articles in all journals with MSC (2010): 30C80, 47B33, 47B10, 47A15


Additional Information

O. El-Fallah
Affiliation: Laboratoire Analyse et Applications URAC/03, Université Mohammed V–Rabat, B.P. 1014 Rabat, Morocco
Email: elfallah@fsr.ac.ma

K. Kellay
Affiliation: Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Liberation, 33405 Talence, France
Email: kkellay@math.u-bordeaux1.fr

DOI: https://doi.org/10.1090/proc/12913
Keywords: Nevanlinna counting function, pull-back measure, composition operators
Received by editor(s): April 8, 2015
Received by editor(s) in revised form: July 20, 2015
Published electronically: October 21, 2015
Additional Notes: The first author was supported by CNRST (URAC/03) and Académie Hassan II des sciences et techniques
Communicated by: Pamela B. Gorkin
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society