Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Central subalgebras of the centralizer of a nilpotent element


Authors: George J. McNinch and Donna M. Testerman
Journal: Proc. Amer. Math. Soc. 144 (2016), 2383-2397
MSC (2010): Primary 20G15; Secondary 17B45, 17B05
DOI: https://doi.org/10.1090/proc/12942
Published electronically: October 21, 2015
MathSciNet review: 3477055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected, semisimple algebraic group over a field $ k$ whose characteristic is very good for $ G$. In a canonical manner, one associates to a nilpotent element $ X \in \mathrm {Lie}(G)$ a parabolic subgroup $ P$ - in characteristic zero, $ P$ may be described using an $ \mathfrak{sl}_2$-triple containing $ X$; in general, $ P$ is the ``instability parabolic'' for $ X$ as in geometric invariant theory.

In this setting, we are concerned with the center $ Z(C)$ of the centralizer $ C$ of $ X$ in $ G$. Choose a Levi factor $ L$ of $ P$, and write $ d$ for the dimension of the center $ Z(L)$. Finally, assume that the nilpotent element $ X$ is even. In this case, we can deform $ \mathrm {Lie}(L)$ to $ \mathrm {Lie}(C)$, and our deformation produces a $ d$-dimensional subalgebra of $ \mathrm {Lie}(Z(C))$. Since $ Z(C)$ is a smooth group scheme, it follows that $ \dim Z(C) \ge d = \dim Z(L)$.

In fact, Lawther and Testerman have proved that $ \dim Z(C) = \dim Z(L)$. Despite only yielding a partial result, the interest in the method found in the present work is that it avoids the extensive case-checking carried out by Lawther and Testerman.


References [Enhancements On Off] (What's this?)

  • [Bor91] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)
  • [Bou89] Nicolas Bourbaki, Commutative algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760 (90a:13001)
  • [Bou02] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629 (2003a:17001)
  • [SGA3] M. Demazure and A. Grothendieck, Schémas en Groupes (SGA 3). I, II, III, Séminaire de Géometrie Algébrique du Bois Marie, Lecture Notes in Math., vol. 151, 152, 153, Springer Verlag, Heidelberg, 1965.
  • [Eis95] David Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • [JN04] Jens Carsten Jantzen and Karl-Hermann Neeb, Lie theory, Lie algebras and representations; Edited by Jean-Philippe Anker and Bent Orsted, Progress in Mathematics, vol. 228, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2042688 (2004j:22001)
  • [Her13] Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753-3774. MR 3042602, https://doi.org/10.1090/S0002-9947-2012-05745-X
  • [LT11] R. Lawther and D. M. Testerman, Centres of centralizers of unipotent elements in simple algebraic groups, Mem. Amer. Math. Soc. 210 (2011), no. 988, vi+188. MR 2780340 (2012c:20127), https://doi.org/10.1090/S0065-9266-10-00594-6
  • [McN04] George J. McNinch, Nilpotent orbits over ground fields of good characteristic, Math. Ann. 329 (2004), no. 1, 49-85. MR 2052869 (2005j:17018), https://doi.org/10.1007/s00208-004-0510-9
  • [McN05] George J. McNinch, Optimal $ {\rm SL}(2)$-homomorphisms, Comment. Math. Helv. 80 (2005), no. 2, 391-426. MR 2142248 (2006f:20055), https://doi.org/10.4171/CMH/19
  • [McN08] George J. McNinch, The centralizer of a nilpotent section, Nagoya Math. J. 190 (2008), 129-181. MR 2423832 (2009d:20110)
  • [MT07] George J. McNinch and Donna M. Testerman, Completely reducible $ \rm SL(2)$-homomorphisms, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4489-4510 (electronic). MR 2309195 (2008d:20084), https://doi.org/10.1090/S0002-9947-07-04289-4
  • [MT09] George J. McNinch and Donna M. Testerman, Nilpotent centralizers and Springer isomorphisms, J. Pure Appl. Algebra 213 (2009), no. 7, 1346-1363. MR 2497582 (2010c:20059), https://doi.org/10.1016/j.jpaa.2008.12.007
  • [Pre03] Alexander Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra 260 (2003), no. 1, 338-366, Special issue celebrating the 80th birthday of Robert Steinberg. MR 1976699 (2004i:17014), https://doi.org/10.1016/S0021-8693(02)00662-2
  • [ST 14] Iulian Simion and Donna Testerman, Unipotent Overgroups in Simple Algebraic Groups, Groups of Exceptional Type, Coxeter Groups and Related Geometries, 2014.
  • [Spr 98] Tonny A. Springer, Linear algebraic groups, 2nd ed., Progr. in Math., vol. 9, Birkhäuser, Boston, 1998.
  • [Ste74] Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279 (50 #4766)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20G15, 17B45, 17B05

Retrieve articles in all journals with MSC (2010): 20G15, 17B45, 17B05


Additional Information

George J. McNinch
Affiliation: Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155
Email: george.mcninch@tufts.edu, mcninchg@member.ams.org

Donna M. Testerman
Affiliation: Institut de Géométrie, Algèbre et Topologie, Bâtiment BCH, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Email: donna.testerman@epfl.ch

DOI: https://doi.org/10.1090/proc/12942
Received by editor(s): November 20, 2014
Received by editor(s) in revised form: July 30, 2015
Published electronically: October 21, 2015
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society