Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Subgroup of interval exchanges generated by torsion elements and rotations

Author: Michael Boshernitzan
Journal: Proc. Amer. Math. Soc. 144 (2016), 2565-2573
MSC (2010): Primary 37E05, 37E15, 54H15; Secondary 37A05
Published electronically: March 1, 2016
MathSciNet review: 3477073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Denote by $ G$ the group of interval exchange transformations (IETs) on the unit interval. Let $ G_{per}\subset G$ be the subgroup generated by torsion elements in $ G$ (periodic IETs), and let $ G_{rot}\subset G$ be the subset of $ 2$-IETs (rotations).

The elements of the subgroup $ H=\langle G_{per},G_{rot}\rangle \subset G$ (generated by the sets $ G_{per}$ and $ G_{rot}$) are characterized constructively in terms of their Sah-Arnoux-Fathi (SAF) invariant. The characterization implies that a non-rotation type $ 3$-IET lies in $ H$ if and only if the lengths of its exchanged intervals are linearly dependent over $ \mathbb{Q}$. In particular, $ H\subsetneq G$.

The main tools used in the paper are the SAF invariant and a recent result by Y. Vorobets that $ G_{per}$ coincides with the commutator subgroup of $ G$.

References [Enhancements On Off] (What's this?)

  • [1] Pierre Arnoux, Échanges d'intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) Monograph. Enseign. Math., vol. 29, Univ. Genève, Geneva, 1981, pp. 5-38 (French). MR 609891 (82k:28022)
  • [2] Pierre Arnoux and Jean-Christophe Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 75-78 (French, with English summary). MR 610152 (82b:57018)
  • [3] Michael D. Boshernitzan, Rank two interval exchange transformations, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 379-394. MR 961737 (90c:28024),
  • [4] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433 (87f:28019)
  • [5] Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31. MR 0357739 (50 #10207)
  • [6] Curtis T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003), no. 2, 191-223. MR 2051398 (2005e:32025),
  • [7] Christopher F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn. 3 (2009), no. 3, 379-405. MR 2538474 (2010i:37086),
  • [8] Gérard Rauzy, Échanges d'intervalles et transformations induites, Acta Arith. 34 (1979), no. 4, 315-328 (French). MR 543205 (82m:10076)
  • [9] Chin-Han Sah, Scissors congruences of the interval, Preprint, 1981.
  • [10] William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222-272. MR 516048 (80e:28034),
  • [11] William A. Veech, The metric theory of interval exchange transformations. III. The Sah-Arnoux-Fathi invariant, Amer. J. Math. 106 (1984), no. 6, 1389-1422. MR 765584 (87j:28024c),
  • [12] Marcelo Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut. 19 (2006), no. 1, 7-100. MR 2219821 (2007f:37002),
  • [13] Y. Vorobets, Notes on the commutator group of the group of interval exchange transformations, arXiv:1109.1352v1 (2011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E05, 37E15, 54H15, 37A05

Retrieve articles in all journals with MSC (2010): 37E05, 37E15, 54H15, 37A05

Additional Information

Michael Boshernitzan
Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005

Received by editor(s): November 14, 2013
Received by editor(s) in revised form: July 26, 2015
Published electronically: March 1, 2016
Additional Notes: The author was supported in part by research grant: NSF-DMS-1102298
Communicated by: Nimish Shah
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society