Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Skorohod's representation theorem for sets of probabilities


Authors: Martin Dumav and Maxwell B. Stinchcombe
Journal: Proc. Amer. Math. Soc. 144 (2016), 3123-3133
MSC (2010): Primary 60B10, 60F99, 91B06
DOI: https://doi.org/10.1090/proc/12932
Published electronically: November 20, 2015
MathSciNet review: 3487242
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize sets of probabilities, $ \boldsymbol {\Pi }$, on a measure space
$ (\Omega ,\mathcal {F})$, with the following representation property: for every measurable set of Borel probabilities, $ A$, on a complete separable metric space, $ (M,d)$, there exists a measurable $ X:\Omega \rightarrow M$ with $ A = \{X(P): P \in \boldsymbol {\Pi }\}$. If $ \boldsymbol {\Pi }$ has this representation property, then: if $ K_n \rightarrow K_0$ is a sequence of compact sets of probabilities on $ M$, there exists a sequence of measurable functions, $ X_n:\Omega \rightarrow M$ such that $ X_n(\boldsymbol {\Pi }) \equiv K_n$ and for all $ P \in \boldsymbol {\Pi }$, $ P(\{\omega : X_n(\omega ) \rightarrow X_0(\omega )\}) = 1$; if the $ K_n$ are convex as well as compact, there exists a jointly measurable $ (K,\omega ) \mapsto H(K,\omega )$ such that $ H(K_n,\boldsymbol {\Pi }) \equiv K_n$ and for all $ P \in \boldsymbol {\Pi }$, $ P(\{\omega : H(K_n,\omega ) \rightarrow H(K_0,\omega )\}) = 1$.


References [Enhancements On Off] (What's this?)

  • [1] Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778 (95k:49001)
  • [2] David Blackwell and Lester E. Dubins, An extension of Skorohod's almost sure representation theorem, Proc. Amer. Math. Soc. 89 (1983), no. 4, 691-692. MR 718998 (86b:60005), https://doi.org/10.2307/2044607
  • [3] Leo Breiman, Lucien Le Cam, and Lorraine Schwartz, Consistent estimates and zero-one sets, Ann. Math. Statist. 35 (1964), 157-161. MR 0161413 (28 #4620)
  • [4] Claude Dellacherie and Paul-André Meyer, Probabilities and potential, North-Holland Mathematics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-New York; North-Holland Publishing Co., Amsterdam-New York, 1978. MR 521810 (80b:60004)
  • [5] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358 (2003h:60001)
  • [6] Xavier Fernique, Un modèle presque sûr pour la convergence en loi, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 7, 335-338 (French, with English summary). MR 934613 (89a:60010)
  • [7] Itzhak Gilboa, Theory of decision under uncertainty, Econometric Society Monographs, vol. 45, Cambridge University Press, Cambridge, 2009. MR 2493167 (2010i:91002)
  • [8] S. Mrówka, On the convergence of nets of sets, Fund. Math. 45 (1958), 237-246. MR 0098359 (20 #4820)
  • [9] Leonard J. Savage, The foundations of statistics, Second revised edition, Dover Publications, Inc., New York, 1972. MR 0348870 (50 #1364)
  • [10] A. V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen. 1 (1956), 289-319 (Russian, with English summary). MR 0084897 (18,943c)
  • [11] Pedro Terán, A continuity theorem for cores of random closed sets, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4417-4425. MR 2431058 (2009h:60029), https://doi.org/10.1090/S0002-9939-08-09412-4
  • [12] John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. MR 0011937 (6,235k)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60B10, 60F99, 91B06

Retrieve articles in all journals with MSC (2010): 60B10, 60F99, 91B06


Additional Information

Martin Dumav
Affiliation: Department of Economics, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Madrid, Spain
Email: mdumav@gmail.com

Maxwell B. Stinchcombe
Affiliation: Department of Economics, University of Texas, Austin, Texas 78712-0301
Email: max.stinchcombe@gmail.com

DOI: https://doi.org/10.1090/proc/12932
Keywords: Skorohod's representation theorem, strongly zero-one sets of probabilities, multiple prior models of choice
Received by editor(s): May 18, 2012
Received by editor(s) in revised form: July 16, 2014, January 27, 2015, and August 19, 2015
Published electronically: November 20, 2015
Communicated by: David Asher Levin
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society