Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity


Author: Takahisa Inui
Journal: Proc. Amer. Math. Soc. 144 (2016), 2901-2909
MSC (2010): Primary 35Q55
DOI: https://doi.org/10.1090/proc/12938
Published electronically: March 18, 2016
MathSciNet review: 3487223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the following semirelativistic nonlinear Schrödinger equation (SNLS):

$\displaystyle \left \{ \begin {array}{ll} i\partial _t u \pm (m^2-\Delta )^{1/2... ...imes \mathbb{R}^d, \\ u(0,x)=u_0(x), & x \in \mathbb{R}^d, \end{array} \right .$    

where $ m\geq 0$, $ \lambda \in \mathbb{C} \setminus \{ 0\}$, $ d\in \mathbb{N}$, $ T>0$, and $ \partial _t=\partial /\partial t$. Here $ (m^2-\Delta )^{1/2}:=\mathcal {F}^{-1} (m^2+\vert\xi \vert^2 )^{1/2} \mathcal {F}$, where $ \mathcal {F}$ denotes the Fourier transform. Fujiwara and Ozawa proved the nonexistence of global weak solutions to SNLS for some initial data in the case of $ d=1$, $ m=0$, and $ 1<p\leq 2$ by a test function method. In this paper, we extend their result to a more general setting: for example, $ m\geq 0$, $ d\in \mathbb{N}$, or $ p>1$. Moreover, we obtain the upper estimates of weak solutions to SNLS. The key to the proof is to choose an appropriate test function.

References [Enhancements On Off] (What's this?)

  • [1] Juan P. Borgna and Diego F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys. 53 (2012), no. 6, 062301, 19. MR 2977673, https://doi.org/10.1063/1.4726198
  • [2] Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047 (2004j:35266)
  • [3] K. Fujiwara and T. Ozawa, Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearrity, preprint.
  • [4] Masahiro Ikeda and Takahisa Inui, Small data blow-up of $ L^2$ or $ H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ. 15 (2015), no. 3, 571-581. MR 3394699, https://doi.org/10.1007/s00028-015-0273-7
  • [5] Masahiro Ikeda and Takahisa Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance, J. Math. Anal. Appl. 425 (2015), no. 2, 758-773. MR 3303890, https://doi.org/10.1016/j.jmaa.2015.01.003
  • [6] Masahiro Ikeda and Yuta Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation, Proc. Amer. Math. Soc. 143 (2015), no. 1, 163-171. MR 3272741, https://doi.org/10.1090/S0002-9939-2014-12201-5
  • [7] Masahiro Ikeda and Yuta Wakasugi, Small-data blow-up of $ L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations 26 (2013), no. 11-12, 1275-1285. MR 3129009
  • [8] Joachim Krieger, Enno Lenzmann, and Pierre Raphaël, Nondispersive solutions to the $ L^2$-critical half-wave equation, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. MR 3054599, https://doi.org/10.1007/s00205-013-0620-1
  • [9] Hiroyuki Takamura and Kyouhei Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations 251 (2011), no. 4-5, 1157-1171. MR 2812585 (2012f:35364), https://doi.org/10.1016/j.jde.2011.03.024
  • [10] Grozdena Todorova and Borislav Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001), no. 2, 464-489. MR 1846744 (2002k:35218), https://doi.org/10.1006/jdeq.2000.3933
  • [11] Borislav T. Yordanov and Qi S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2006), no. 2, 361-374. MR 2195336 (2006j:35169), https://doi.org/10.1016/j.jfa.2005.03.012
  • [12] Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 2, 109-114 (English, with English and French summaries). MR 1847355 (2003d:35189), https://doi.org/10.1016/S0764-4442(01)01999-1
  • [13] Yi Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B 28 (2007), no. 2, 205-212. MR 2316656 (2008a:35201), https://doi.org/10.1007/s11401-005-0205-x

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35Q55

Retrieve articles in all journals with MSC (2010): 35Q55


Additional Information

Takahisa Inui
Affiliation: Department of Mathematics, Kyoto University, Kyoto 60-5802, Japan
Email: inui@math.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/proc/12938
Keywords: Semirelativistic equations, test function, nonexistence of global solution
Received by editor(s): March 19, 2015
Published electronically: March 18, 2016
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society