Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the universal central extension of hyperelliptic current algebras


Author: Ben Cox
Journal: Proc. Amer. Math. Soc. 144 (2016), 2825-2835
MSC (2010): Primary 17B37, 17B67; Secondary 81R10
DOI: https://doi.org/10.1090/proc/13057
Published electronically: March 1, 2016
MathSciNet review: 3487217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p(t)\in \mathbb{C}[t]$ be a polynomial with distinct roots and nonzero constant term. We describe, using Faà de Bruno's formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras $ \mathfrak{g}\otimes R$ whose coordinate ring is of the form $ R=\mathbb{C}[t,t^{-1},u\,\vert\, u^2=p(t)]$.


References [Enhancements On Off] (What's this?)

  • [Arb00] L. F. A Arbogast,
    Du Calcul des Derivations,
    1800.
  • [ATY91] Hidetoshi Awata, Akihiro Tsuchiya, and Yasuhiko Yamada, Integral formulas for the WZNW correlation functions, Nuclear Phys. B 365 (1991), no. 3, 680-696. MR 1136712 (93h:81105), https://doi.org/10.1016/0550-3213(91)90515-Y
  • [BCF09] André Bueno, Ben Cox, and Vyacheslav Futorny, Free field realizations of the elliptic affine Lie algebra $ \mathfrak{sl}(2,{\bf R})\oplus (\Omega _R/d{\rm R})$, J. Geom. Phys. 59 (2009), no. 9, 1258-1270. MR 2541818 (2010k:17035), https://doi.org/10.1016/j.geomphys.2009.06.007
  • [Bel28] E. T. Bell, Partition polynomials, Ann. of Math. (2) 29 (1927/28), no. 1-4, 38-46. MR 1502817, https://doi.org/10.2307/1967979
  • [Bre94a] Murray Bremner, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable, Canad. Math. Bull. 37 (1994), no. 1, 21-28. MR 1261553 (95d:17025), https://doi.org/10.4153/CMB-1994-004-8
  • [Bre94b] Murray Bremner, Universal central extensions of elliptic affine Lie algebras, J. Math. Phys. 35 (1994), no. 12, 6685-6692. MR 1303073 (95i:17024), https://doi.org/10.1063/1.530700
  • [Bre95] Murray Bremner, Four-point affine Lie algebras, Proc. Amer. Math. Soc. 123 (1995), no. 7, 1981-1989. MR 1249871 (95i:17025), https://doi.org/10.2307/2160931
  • [CF11] Ben Cox and Vyacheslav Futorny, DJKM algebras I: their universal central extension, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3451-3460. MR 2813377 (2012d:17041), https://doi.org/10.1090/S0002-9939-2011-10906-7
  • [CFT13] Ben Cox, Vyacheslav Futorny, and Juan A. Tirao, DJKM algebras and non-classical orthogonal polynomials, J. Differential Equations 255 (2013), no. 9, 2846-2870. MR 3090080, https://doi.org/10.1016/j.jde.2013.07.020
  • [CGLZ14] Ben Cox, Xiangqian Guo, Rencai Lu, and Kaiming Zhao, $ n$-point Virasoro algebras and their modules of densities, Commun. Contemp. Math. 16 (2014), no. 3, 1350047, 27. MR 3211093, https://doi.org/10.1142/S0219199713500478
  • [CGLZ15] Ben Cox, Xianquan Guo, Rencai Lu, and Kaiming Zhao,
    Simple superelliptic Lie algebras,
    Math arXiv:1412.7777, 2015.
  • [CJ14] Ben Cox and Elizabeth Jurisich, Realizations of the three-point Lie algebra $ \mathfrak{sl}(2,{\mathcal {R}})\oplus (\Omega _{{\mathcal {R}}}/d{\mathcal {R}})$, Pacific J. Math. 270 (2014), no. 1, 27-47. MR 3245847, https://doi.org/10.2140/pjm.2014.270.27
  • [Cox08] Ben Cox, Realizations of the four point affine Lie algebra $ \mathfrak{sl}(2,R)\oplus (\Omega _R/dR)$, Pacific J. Math. 234 (2008), no. 2, 261-289. MR 2373448 (2008k:17030), https://doi.org/10.2140/pjm.2008.234.261
  • [dB57] M. Faà. de Bruno,
    Sur une nouvelle formule de calcul differentiel,
    The Quarterly Journal of Pure and Applied Mathematics, 1:359-360, 1857.
  • [EFK98] Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs, vol. 58, American Mathematical Society, Providence, RI, 1998. MR 1629472 (2001b:32028)
  • [FFR94] Boris Feigin, Edward Frenkel, and Nikolai Reshetikhin, Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys. 166 (1994), no. 1, 27-62. MR 1309540 (96e:82012)
  • [Fre05] Edward Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), no. 2, 297-404. MR 2146349 (2006d:17018), https://doi.org/10.1016/j.aim.2004.08.002
  • [Kas84] Christian Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, Proceedings of the Luminy conference on algebraic $ K$-theory (Luminy, 1983), 1984, pp. 265-275. MR 772062 (86h:17013), https://doi.org/10.1016/0022-4049(84)90040-9
  • [KL82] C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 119-142 (1983) (French, with English summary). MR 694130 (85g:17004)
  • [KN87a] Igor Moiseevich Krichever and S. P. Novikov, Algebras of Virasoro type, Riemann surfaces and strings in Minkowski space, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 47-61, 96 (Russian). MR 925072 (89f:17020)
  • [KN87b] Igor Moiseevich Krichever and S. P. Novikov, Algebras of Virasoro type, Riemann surfaces and the structures of soliton theory, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 46-63 (Russian). MR 902293 (88i:17016)
  • [KN89] Igor Moiseevich Krichever and S. P. Novikov, Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces, Funktsional. Anal. i Prilozhen. 23 (1989), no. 1, 24-40 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 1, 19-33. MR 998426 (90k:17049), https://doi.org/10.1007/BF01078570
  • [Kur91] Gen Kuroki, Fock space representations of affine Lie algebras and integral representations in the Wess-Zumino-Witten models, Comm. Math. Phys. 142 (1991), no. 3, 511-542. MR 1138049 (92k:17043)
  • [Sch14] Martin Schlichenmaier, Krichever-Novikov type algebras, De Gruyter Studies in Mathematics, vol. 53, De Gruyter, Berlin, 2014. Theory and applications. MR 3237422
  • [She12] Oleg K. Sheinman, Current algebras on Riemann surfaces, de Gruyter Expositions in Mathematics, vol. 58, Walter de Gruyter GmbH & Co. KG, Berlin, 2012. New results and applications. MR 2985911
  • [SV90] V. V. Schechtman and A. N. Varchenko, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990), no. 4, 279-283. MR 1077959 (92g:33027), https://doi.org/10.1007/BF00626523

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B37, 17B67, 81R10

Retrieve articles in all journals with MSC (2010): 17B37, 17B67, 81R10


Additional Information

Ben Cox
Affiliation: Department of Mathematics, University of Charleston, 66 George Street, Charleston, South Carolina 29424
Email: coxbl@cofc.edu

DOI: https://doi.org/10.1090/proc/13057
Keywords: Universal central extensions, Krichever-Novikov algebras, hyperelliptic current algebras
Received by editor(s): March 12, 2015
Received by editor(s) in revised form: September 3, 2015
Published electronically: March 1, 2016
Additional Notes: Travel to the Mittag-Leffler Institute was partially supported by a Simons Collaborations Grant.
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society