Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integral Hodge classes on fourfolds fibered by quadric bundles


Authors: Zhiyuan Li and Zhiyu Tian
Journal: Proc. Amer. Math. Soc. 144 (2016), 3333-3345
MSC (2010): Primary 14C25, 14C30
DOI: https://doi.org/10.1090/proc/12999
Published electronically: March 17, 2016
MathSciNet review: 3503702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the space of sections and certain bisections on a quadric surfaces bundle $ X$ over a smooth curve. The Abel-Jacobi from these spaces to the intermediate Jacobian will be shown to be dominant with rationally connected fibers. As an application, we prove that the integral Hodge conjecture holds for degree $ 4$ integral Hodge classes (IHC) of fourfolds fibered by quadric bundles over a smooth curve. This gives an alternative proof of a result of Colliot-Thélène and Voisin.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962), 25-45. MR 0145560 (26 #3091)
  • [2] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235-1253. MR 714776 (85i:14002), https://doi.org/10.2307/2374341
  • [3] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822 (91i:14034)
  • [4] Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l'exemple d'Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141-158 (French). MR 999316 (90m:14012), https://doi.org/10.1007/BF01850658
  • [5] Jean-Louis Colliot-Thélène and Claire Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), no. 5, 735-801 (French, with English and French summaries). MR 2904092, https://doi.org/10.1215/00127094-1548389
  • [6] A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238 (1978), no. 1, 79-88. MR 510310 (80a:14018), https://doi.org/10.1007/BF01351457
  • [7] Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496-541. MR 0260733 (41 #5357)
  • [8] Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957-1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040 (26 #3566)
  • [9] Joe Harris and Loring W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), no. 1, 71-84. MR 721453 (85c:14032), https://doi.org/10.1016/0040-9383(84)90026-0
  • [10] Brendan Hassett and Yuri Tschinkel, Spaces of sections of quadric surface fibrations over curves, Compact moduli spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 227-249. MR 2894638, https://doi.org/10.1090/conm/564/11161
  • [11] Brendan Hassett, Anthony Várilly-Alvarado, and Patrick Varilly, Transcendental obstructions to weak approximation on general K3 surfaces, Adv. Math. 228 (2011), no. 3, 1377-1404. MR 2824558 (2012i:14025), https://doi.org/10.1016/j.aim.2011.06.017
  • [12] A. N. Tjurin, Five lectures on three-dimensional varieties, Uspehi Mat. Nauk 27 (1972), no. 5, (167), 3-50 (Russian). MR 0412196 (54 #323)
  • [13] Claire Voisin, Hodge theory and complex algebraic geometry. I, Reprint of the 2002 English edition, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2007. Translated from the French by Leila Schneps. MR 2451566 (2009j:32014)
  • [14] Claire Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261-296. MR 2342587 (2008g:14012), https://doi.org/10.1007/s11537-007-0639-x
  • [15] Claire Voisin, Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic Geom. 22 (2013), no. 1, 141-174. MR 2993050, https://doi.org/10.1090/S1056-3911-2012-00597-9
  • [16] Yi Zhu, Homogeneous Fibrations over Curves, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)-State University of New York at Stony Brook. MR 3067976

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14C25, 14C30

Retrieve articles in all journals with MSC (2010): 14C25, 14C30


Additional Information

Zhiyuan Li
Affiliation: Mathematisches Institut, University of Bonn, Endenicher Allee 60, Bonn 53115, Germany
Email: zhiyli@math.uni-bonn.de

Zhiyu Tian
Affiliation: CNRS, Institute Fourier, UMR, 5582, 100 Rue des Mathématiques, BP 74, 38402, Saint-Martin d’Héres, France
Email: zhiyu.tian@ujf-grenoble.fr

DOI: https://doi.org/10.1090/proc/12999
Received by editor(s): November 8, 2014
Received by editor(s) in revised form: July 29, 2015, October 12, 2015, and October 18, 2015
Published electronically: March 17, 2016
Communicated by: Lev Borisov
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society