Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

An observation on generalized Hilbert-Kunz functions


Author: Adela Vraciu
Journal: Proc. Amer. Math. Soc. 144 (2016), 3221-3229
MSC (2010): Primary 13A35
DOI: https://doi.org/10.1090/proc/13000
Published electronically: March 25, 2016
MathSciNet review: 3503691
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, under certain assumptions, generalized Hilbert-Kunz multiplicities can be expressed as linear combinations of classical Hilbert-Kunz multiplicities.


References [Enhancements On Off] (What's this?)

  • [Ab] Ian M. Aberbach, Some conditions for the equivalence of weak and strong $ F$-regularity, Comm. Algebra 30 (2002), no. 4, 1635-1651. MR 1894033 (2003b:13007), https://doi.org/10.1081/AGB-120013205
  • [BM] Holger Brenner and Paul Monsky, Tight closure does not commute with localization, Ann. of Math. (2) 171 (2010), no. 1, 571-588. MR 2630050 (2011d:13005), https://doi.org/10.4007/annals.2010.171.571
  • [Br2] H. Brenner, Irrational Hilbert-Kunz multiplicities, preprint, arXiv:1305.5873.
  • [Bu] Lindsay Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369-373. MR 0304377 (46 #3512)
  • [DS] H. Dao and I. Smirnov, On generalized Hilbert-Kunz function and multiplicity, preprint, arXiv:1305.1833.
  • [EY] N. Epstein and Y. Yao, Some extensions of Hilbert-Kunz multiplicity, preprint, arXiv:1103.4730.
  • [HH] Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR 1017784 (91g:13010), https://doi.org/10.2307/1990984
  • [Hu1] Craig Huneke, The saturation of Frobenius powers of ideals. Special issue in honor of Robin Hartshorne, Comm. Algebra 28 (2000), no. 12, 5563-5572. MR 1808589 (2001k:13005), https://doi.org/10.1080/00927870008827175
  • [Hu2] Craig Huneke, Hilbert-Kunz multiplicity and the F-signature, Commutative algebra, Springer, New York, 2013, pp. 485-525. MR 3051383, https://doi.org/10.1007/978-1-4614-5292-8_15
  • [Ku] Ernst Kunz, On Noetherian rings of characteristic $ p$, Amer. J. Math. 98 (1976), no. 4, 999-1013. MR 0432625 (55 #5612)
  • [Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43-49. MR 697329 (84k:13012), https://doi.org/10.1007/BF01457082
  • [Vr] Adela Vraciu, Local cohomology of Frobenius images over graded affine algebras, J. Algebra 228 (2000), no. 1, 347-356. MR 1760968 (2001b:13023), https://doi.org/10.1006/jabr.1999.8266

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13A35

Retrieve articles in all journals with MSC (2010): 13A35


Additional Information

Adela Vraciu
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: vraciu@math.sc.edu

DOI: https://doi.org/10.1090/proc/13000
Keywords: Hilbert-Kunz multiplicity, generalized Hilbert-Kunz multiplicity
Received by editor(s): May 29, 2015
Received by editor(s) in revised form: September 10, 2015
Published electronically: March 25, 2016
Additional Notes: This research was partly supported by NSF grant DMS-1200085
Communicated by: Irena Peeva
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society