Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Almost isometric constants for partial unconditionality


Authors: R. M. Causey and S. J. Dilworth
Journal: Proc. Amer. Math. Soc. 144 (2016), 3397-3404
MSC (2010): Primary 46B15, 41A65
DOI: https://doi.org/10.1090/proc/13004
Published electronically: March 25, 2016
MathSciNet review: 3503707
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss optimal constants of certain projections on subsequences of weakly null sequences. Positive results yield constants arbitrarily close to $ 1$ for Schreier type projections, and arbitrarily close to $ 1$ for Elton type projections under the assumption that the weakly null sequence admits no subsequence generating a $ c_0$ spreading model. As an application, we prove that a weakly null sequence admitting a spreading model not equivalent to the $ c_0$ basis has a quasi-greedy subsequence with quasi-greedy constant arbitrarily close to $ 1$.


References [Enhancements On Off] (What's this?)

  • [1] F. Albiac and J. L. Ansorena, Characterization of $ 1$-quasi-greedy bases, J. Approx. Theory 201 (2016), 7-12. MR 3424006, https://doi.org/10.1016/j.jat.2015.08.006
  • [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 0115069 (22 #5872)
  • [3] S. J. Dilworth, N. J. Kalton, and Denka Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67-101. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030904 (2005a:46021), https://doi.org/10.4064/sm159-1-4
  • [4] S. J. Dilworth, N. J. Kalton, Denka Kutzarova, and V. N. Temlyakov, The thresholding greedy algorithm, greedy bases, and duality, Constr. Approx. 19 (2003), no. 4, 575-597. MR 1998906 (2004e:41045), https://doi.org/10.1007/s00365-002-0525-y
  • [5] S. J. Dilworth, E. Odell, Th. Schlumprecht, and A. Zsák, Partial unconditionality, Houston J. Math. 35 (2009), no. 4, 1251-1311. MR 2577152 (2011d:46030)
  • [6] John Hancock Elton, Weakly null normalized sequences in Banach spaces, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)-Yale University. MR 2628434
  • [7] Gustavo Garrigós and Przemyslaw Wojtaszczyk, Conditional quasi-greedy bases in Hilbert and Banach spaces, Indiana Univ. Math. J. 63 (2014), no. 4, 1017-1036. MR 3263920, https://doi.org/10.1512/iumj.2014.63.5269
  • [8] S. V. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), no. 3, 365-379. MR 1716087 (2000j:46020)
  • [9] B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77-98. MR 0438091 (55 #11010)
  • [10] E. Odell, On Schreier unconditional sequences, Banach spaces (Mérida, 1992) Contemp. Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 197-201. MR 1209461 (94f:46016), https://doi.org/10.1090/conm/144/1209461
  • [11] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2000), no. 2, 293-314. MR 1806955 (2001k:46017), https://doi.org/10.1006/jath.2000.3512

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B15, 41A65

Retrieve articles in all journals with MSC (2010): 46B15, 41A65


Additional Information

R. M. Causey
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: causey@math.sc.edu

S. J. Dilworth
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: dilworth@math.sc.edu

DOI: https://doi.org/10.1090/proc/13004
Received by editor(s): September 21, 2015
Published electronically: March 25, 2016
Additional Notes: The second author was supported by the National Science Foundation under Grant Number DMS-1361461
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society