Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On the structure of Lipschitz-free spaces


Authors: Marek Cúth, Michal Doucha and Przemysław Wojtaszczyk
Journal: Proc. Amer. Math. Soc. 144 (2016), 3833-3846
MSC (2010): Primary 46B03, 54E35
DOI: https://doi.org/10.1090/proc/13019
Published electronically: February 17, 2016
MathSciNet review: 3513542
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of $ \ell _1$. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space $ K$ such that $ \mathcal {F}(K)$ is not isomorphic to a subspace of $ L_1$ and we show that whenever $ M$ is a subset of $ \mathbb{R}^n$, then $ \mathcal {F}(M)$ is weakly sequentially complete; in particular, $ c_0$ does not embed into $ \mathcal {F}(M)$.


References [Enhancements On Off] (What's this?)

  • [1] Israel Aharoni, Every separable metric space is Lipschitz equivalent to a subset of $ c^{+}_{0}$, Israel J. Math. 19 (1974), 284-291. MR 0511661 (58 #23471a)
  • [2] Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298 (2006h:46005)
  • [3] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673 (2001b:46001)
  • [4] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 0115069 (22 #5872)
  • [5] J. Bourgain, On weak completeness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), no. 1, 111-118. MR 712065 (84j:46039)
  • [6] J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math. 77 (1984), no. 3, 245-253. MR 745280 (85f:46044)
  • [7] Marek Cúth and Michal Doucha, Lipschitz-free spaces over ultrametric spaces, Mediterr. J. Math., electronically published on May 03, 2015, DOI: https://doi.org/10.1007/s00009-015-0566-7 (to appear in print).
  • [8] A. Dalet, Free spaces over countable compact metric spaces, Proc. Amer. Math. Soc. 143 (2015), no. 8, 3537-3546. MR 3348795, https://doi.org/10.1090/S0002-9939-2015-12518-X
  • [9] Yves Dutrieux and Valentin Ferenczi, The Lipschitz free Banach spaces of $ C(K)$-spaces, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1039-1044 (electronic). MR 2196036 (2006h:46003), https://doi.org/10.1090/S0002-9939-05-08301-2
  • [10] Charles Fefferman, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoamericana 21 (2005), no. 1, 313-348. MR 2155023 (2006h:58009), https://doi.org/10.4171/RMI/424
  • [11] V. P. Fonf and P. Wojtaszczyk, Properties of the Holmes space, Topology Appl. 155 (2008), no. 14, 1627-1633. MR 2435154 (2009f:46017), https://doi.org/10.1016/j.topol.2008.03.008
  • [12] Joanna Garbulińska and Wiesław Kubiś, Remarks on Gurariĭ spaces, Extracta Math. 26 (2011), no. 2, 235-269. MR 2977626
  • [13] A. Godard, Tree metrics and their Lipschitz-free spaces, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4311-4320. MR 2680057 (2012a:46012), https://doi.org/10.1090/S0002-9939-2010-10421-5
  • [14] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121-141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906 (2004m:46027), https://doi.org/10.4064/sm159-1-6
  • [15] V. I. Gurariĭ, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Ž. 7 (1966), 1002-1013 (Russian). MR 0200697 (34 #585)
  • [16] Petr Hájek and Michal Johanis, Smooth analysis in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 19, De Gruyter, Berlin, 2014. MR 3244144
  • [17] Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213-227. MR 3356002, https://doi.org/10.4064/sm226-3-2
  • [18] Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213-227. MR 3356002, https://doi.org/10.4064/sm226-3-2
  • [19] S. V. Kisljakov, Sobolev imbedding operators, and the nonisomorphism of certain Banach spaces, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 22-27 (Russian). MR 0627173 (58 #30139)
  • [20] G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, J. Funct. Anal. 264 (2013), no. 10, 2323-2334. MR 3035057, https://doi.org/10.1016/j.jfa.2013.02.012
  • [21] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37 #6743)
  • [22] Assaf Naor and Gideon Schechtman, Planar earthmover is not in $ L_1$, SIAM J. Comput. 37 (2007), no. 3, 804-826 (electronic). MR 2341917 (2008g:46011), https://doi.org/10.1137/05064206X
  • [23] Aleš Nekvinda and Luděk Zajíček, A simple proof of the Rademacher theorem, Časopis Pěst. Mat. 113 (1988), no. 4, 337-341 (English, with Russian and Czech summaries). MR 981874 (90c:26043)
  • [24] I. Protasov, Combinatorics of numbers, Mathematical Studies Monograph Series, vol. 2, VNTL Publishers, L$ '$viv, 1997. Translated from the Russian manuscript by Michael Zarichnyi and Taras Banakh. MR 1723431 (2000h:05227)
  • [25] Haskell P. Rosenthal, The Banach spaces $ C(K)$, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1547-1602. MR 1999603 (2004g:46028), https://doi.org/10.1016/S1874-5849(03)80043-8
  • [26] Walter Rudin, Principles of mathematical analysis, 3rd ed., McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. International Series in Pure and Applied Mathematics. MR 0385023 (52 #5893)
  • [27] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645 (2002g:46002)
  • [28] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277 (93d:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B03, 54E35

Retrieve articles in all journals with MSC (2010): 46B03, 54E35


Additional Information

Marek Cúth
Affiliation: Instytut Matematyczny Polskiej Akademii Nauk, Śniadeckich 8, 00-656 Warszawa, Poland
Address at time of publication: Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Prague 8, Czech Republic
Email: cuth@karlin.mff.cuni.cz

Michal Doucha
Affiliation: Instytut Matematyczny Polskiej Akademii Nauk, Śniadeckich 8, 00-656 Warszawa, Poland
Email: m.doucha@post.cz

Przemysław Wojtaszczyk
Affiliation: Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Prosta 69, 02-838 Warszawa, Poland
Email: wojtaszczyk@icm.edu.pl

DOI: https://doi.org/10.1090/proc/13019
Keywords: Lipschitz-free space, isomorphically universal separable Banach space, embedding of $c_0$
Received by editor(s): May 27, 2015
Received by editor(s) in revised form: July 14, 2015, and October 28, 2015
Published electronically: February 17, 2016
Additional Notes: The first author was supported by the Warsaw Center of Mathematics and Computer Science (KNOW–MNSzW)
The second author was supported by IMPAN’s International Fellowship Programme and partially sponsored by PCOFUND-GA-2012-600415.
The third author was supported by Polish NCN grant UMO-2011/03/B/ST1/04902.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society