Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Strong convergence of solutions to nonautonomous Kolmogorov equations


Authors: Luca Lorenzi, Alessandra Lunardi and Roland Schnaubelt
Journal: Proc. Amer. Math. Soc. 144 (2016), 3903-3917
MSC (2010): Primary 35K10; Secondary 35K15, 35B40
DOI: https://doi.org/10.1090/proc/13031
Published electronically: April 28, 2016
MathSciNet review: 3513547
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a class of nonautonomous, linear, parabolic equations with unbounded coefficients on $ \mathbb{R}^{d}$ which admit an evolution system of measures. It is shown that the solutions of these equations converge to constant functions as $ t\to +\infty $. We further establish the uniqueness of the tight evolution system of measures and treat the case of converging coefficients.


References [Enhancements On Off] (What's this?)

  • [1] Luciana Angiuli, Pointwise gradient estimates for evolution operators associated with Kolmogorov operators, Arch. Math. (Basel) 101 (2013), no. 2, 159-170. MR 3089772, https://doi.org/10.1007/s00013-013-0542-z
  • [2] Luciana Angiuli, Luca Lorenzi, and Alessandra Lunardi, Hypercontractivity and asymptotic behavior in nonautonomous Kolmogorov equations, Comm. Partial Differential Equations 38 (2013), no. 12, 2049-2080. MR 3169770, https://doi.org/10.1080/03605302.2013.840790
  • [3] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607-694. MR 0435594 (55 #8553)
  • [4] D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations 3 (1967), 1-14. MR 0208160 (34 #7970)
  • [5] D. G. Aronson and P. Besala, Uniqueness of positive solutions of parabolic equations with unbounded coefficients, Colloq. Math. 18 (1967), 125-135. MR 0219900 (36 #2971)
  • [6] W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné, Ann. Polon. Math. 18 (1966), 79-94 (French). MR 0197998 (33 #6157)
  • [7] V. I. Bogachev, N. V. Krylov, and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations 26 (2001), no. 11-12, 2037-2080. MR 1876411 (2002m:60117), https://doi.org/10.1081/PDE-100107815
  • [8] Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR 1707332 (2001e:47068)
  • [9] Giuseppe Da Prato and Beniamin Goldys, Elliptic operators on $ {\mathbb{R}}^d$ with unbounded coefficients, J. Differential Equations 172 (2001), no. 2, 333-358. MR 1829633 (2002d:35228), https://doi.org/10.1006/jdeq.2000.3866
  • [10] Giuseppe Da Prato and Alessandra Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), no. 1, 94-114. MR 1343161 (97m:47056), https://doi.org/10.1006/jfan.1995.1084
  • [11] Giuseppe Da Prato and Alessandra Lunardi, Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ. 7 (2007), no. 4, 587-614. MR 2369672 (2008k:35200), https://doi.org/10.1007/s00028-007-0321-z
  • [12] Giuseppe Da Prato and Michael Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., vol. 59, Birkhäuser, Basel, 2008, pp. 115-122. MR 2401953 (2009h:60104), https://doi.org/10.1007/978-3-7643-8458-6_7
  • [13] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. MR 1417491
  • [14] William Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1-31. MR 0063607 (16,150d)
  • [15] Mark Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Statist. Phys. 117 (2004), no. 3-4, 617-634. MR 2099730 (2005k:82074), https://doi.org/10.1007/s10955-004-2273-9
  • [16] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836 (31 #6062)
  • [17] Matthias Geissert and Alessandra Lunardi, Invariant measures and maximal $ L^2$ regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc. (2) 77 (2008), no. 3, 719-740. MR 2418301 (2011j:47128), https://doi.org/10.1112/jlms/jdn009
  • [18] Matthias Geissert and Alessandra Lunardi, Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc. (2) 79 (2009), no. 1, 85-106. MR 2472135 (2010g:35129), https://doi.org/10.1112/jlms/jdn057
  • [19] N. V. Krylov, Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces, J. Funct. Anal. 183 (2001), no. 1, 1-41. MR 1837532 (2002c:46069), https://doi.org/10.1006/jfan.2000.3728
  • [20] Mirosław Krzyżański, Sur la solution fondamentale de l'équation linéaire normale du type parabolique dont le dernier coefficient est non borné. I, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 32 (1962), 326-330 (French). MR 0158176 (28 #1402)
  • [21] Mirosław Krzyżański, Sur la solution fondamentale de l'équation linéaire normale du type parabolique dont le dernier coefficient est non borné. II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 32 (1962), 471-476 (French). MR 0158177 (28 #1403)
  • [22] Markus Kunze, Luca Lorenzi, and Alessandra Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc. 362 (2010), no. 1, 169-198. MR 2550148 (2010j:35632), https://doi.org/10.1090/S0002-9947-09-04738-2
  • [23] Luca Lorenzi and Marcello Bertoldi, Analytical methods for Markov semigroups, Pure and Applied Mathematics (Boca Raton), vol. 283, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2313847 (2009a:47090)
  • [24] Luca Lorenzi, Alessandra Lunardi, and Alessandro Zamboni, Asymptotic behavior in time periodic parabolic problems with unbounded coefficients, J. Differential Equations 249 (2010), no. 12, 3377-3418. MR 2737435 (2012b:47115), https://doi.org/10.1016/j.jde.2010.08.019
  • [25] Luca Lorenzi and Alessandro Zamboni, Cores for parabolic operators with unbounded coefficients, J. Differential Equations 246 (2009), no. 7, 2724-2761. MR 2503020 (2010m:35192), https://doi.org/10.1016/j.jde.2008.12.015
  • [26] G. Metafune, D. Pallara, and M. Wacker, Feller semigroups on $ \mathbf {R}^N$, Semigroup Forum 65 (2002), no. 2, 159-205. MR 1911723 (2003i:35170), https://doi.org/10.1007/s002330010129
  • [27] Jan Prüss, Abdelaziz Rhandi, and Roland Schnaubelt, The domain of elliptic operators on $ L^p(\mathbb{R}^d)$ with unbounded drift coefficients, Houston J. Math. 32 (2006), no. 2, 563-576. MR 2293873 (2007m:35032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35K10, 35K15, 35B40

Retrieve articles in all journals with MSC (2010): 35K10, 35K15, 35B40


Additional Information

Luca Lorenzi
Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
Email: luca.lorenzi@unipr.it

Alessandra Lunardi
Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
Email: alessandra.lunardi@unipr.it

Roland Schnaubelt
Affiliation: Department of Mathematics, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany
Email: schnaubelt@kit.edu

DOI: https://doi.org/10.1090/proc/13031
Keywords: Nonautonomous parabolic problem, unbounded coefficients, invariant measures, uniqueness, convergence, evolution semigroup, Green's function, gradient estimates.
Received by editor(s): August 17, 2015
Received by editor(s) in revised form: November 6, 2015
Published electronically: April 28, 2016
Additional Notes: The first author wishes to thank the Department of Mathematics of the Karlsruhe Institute of Technology for the kind hospitality during his visit.
This work was supported by the M.I.U.R. Research Project PRIN 2010-2011 “Problemi differenziali di evoluzione: approcci deterministici e stocastici e loro interazioni”
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society