Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Synchronized vector solutions to an elliptic system


Authors: Qihan He and Shuangjie Peng
Journal: Proc. Amer. Math. Soc. 144 (2016), 4055-4063
MSC (2010): Primary 58J10; Secondary 58J20
DOI: https://doi.org/10.1090/proc/13160
Published electronically: April 27, 2016
MathSciNet review: 3513560
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish a relationship between the elliptic system

$\displaystyle \left \{ \begin {array}{ll} -\Delta u +\lambda u=\mu _1 \vert u\v... ...ga ,\vspace {2mm}\\ u=v=0~~\hbox {on}~ \partial \Omega ,\\ \end{array} \right .$

and its corresponding single elliptic problem, where $ \lambda \in \mathbb{R}$, $ \beta _i>0, \mu _i<0, p_i,q_i\ge 0, 1<p_i+q_i =2p+1$ for $ i=1,2$, and $ \Omega \subset \mathbb{R}^N\,(N\ge 1)$ can be a bounded or unbounded domain. By using this fact, we can obtain many results on the existence, non-existence and uniqueness of classical vector solutions to this system via the related single elliptic problem.

References [Enhancements On Off] (What's this?)

  • [1] Antonio Ambrosetti and Eduardo Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006), no. 7, 453-458 (English, with English and French summaries). MR 2214594, https://doi.org/10.1016/j.crma.2006.01.024
  • [2] Antonio Ambrosetti and Eduardo Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 67-82. MR 2302730, https://doi.org/10.1112/jlms/jdl020
  • [3] Thomas Bartsch, Norman Dancer, and Zhi-Qiang Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 345-361. MR 2592975, https://doi.org/10.1007/s00526-009-0265-y
  • [4] Thomas Bartsch, Zhi-Qiang Wang, and Juncheng Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl. 2 (2007), no. 2, 353-367. MR 2372993, https://doi.org/10.1007/s11784-007-0033-6
  • [5] Vieri Benci and Giovanna Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987), no. 4, 283-300. MR 898712, https://doi.org/10.1007/BF00282048
  • [6] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. MR 709644, https://doi.org/10.1002/cpa.3160360405
  • [7] Zhijie Chen and Wenming Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012), no. 2, 515-551. MR 2947540, https://doi.org/10.1007/s00205-012-0513-8
  • [8] Zhijie Chen and Wenming Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations 48 (2013), no. 3-4, 695-711. MR 3116028, https://doi.org/10.1007/s00526-012-0568-2
  • [9] E. N. Dancer, Juncheng Wei, and Tobias Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 3, 953-969. MR 2629888, https://doi.org/10.1016/j.anihpc.2010.01.009
  • [10] Wei Yue Ding and Wei-Ming Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), no. 4, 283-308. MR 807816, https://doi.org/10.1007/BF00282336
  • [11] Yuxia Guo, Bo Li, and Juncheng Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $ \mathbb{R}^3$, J. Differential Equations 256 (2014), no. 10, 3463-3495. MR 3177903, https://doi.org/10.1016/j.jde.2014.02.007
  • [12] Man Kam Kwong, Uniqueness of positive solutions of $ \Delta u-u+u^p=0$ in $ {\bf R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. MR 969899, https://doi.org/10.1007/BF00251502
  • [13] Congming Li and Li Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal. 40 (2008), no. 3, 1049-1057. MR 2452879, https://doi.org/10.1137/080712301
  • [14] Tai-Chia Lin and Juncheng Wei, Ground state of $ N$ coupled nonlinear Schrödinger equations in $ \mathbf {R}^n$, $ n\leq 3$, Comm. Math. Phys. 255 (2005), no. 3, 629-653. MR 2135447, https://doi.org/10.1007/s00220-005-1313-x
  • [15] Zhaoli Liu and Zhi-Qiang Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), no. 3, 721-731. MR 2426142, https://doi.org/10.1007/s00220-008-0546-x
  • [16] Li Ma and Lin Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application, J. Differential Equations 245 (2008), no. 9, 2551-2565. MR 2455776, https://doi.org/10.1016/j.jde.2008.04.008
  • [17] Li Ma and Baiyu Liu, Symmetry results for decay solutions of elliptic systems in the whole space, Adv. Math. 225 (2010), no. 6, 3052-3063. MR 2729001, https://doi.org/10.1016/j.aim.2010.05.022
  • [18] L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 229 (2006), no. 2, 743-767. MR 2263573, https://doi.org/10.1016/j.jde.2006.07.002
  • [19] R. Mandel, Uniqueness results for semilinear elliptic systems on $ \mathbb{R}^n$, http://onlinelibrary. wiley.com/doi/10.1002/mana.201300130.
  • [20] Alexandre Montaru, Boyan Sirakov, and Philippe Souplet, Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems, Arch. Ration. Mech. Anal. 213 (2014), no. 1, 129-169. MR 3198645, https://doi.org/10.1007/s00205-013-0719-4
  • [21] Benedetta Noris and Miguel Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1681-1692. MR 2587453, https://doi.org/10.1090/S0002-9939-10-10231-7
  • [22] Benedetta Noris, Hugo Tavares, Susanna Terracini, and Gianmaria Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), no. 3, 267-302. MR 2599456, https://doi.org/10.1002/cpa.20309
  • [23] S. I. Pohožaev, On the eigenfunctions of the equation $ \Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39 (Russian). MR 0192184
  • [24] Pavol Quittner and Philippe Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys. 311 (2012), no. 1, 1-19. MR 2892461, https://doi.org/10.1007/s00220-012-1440-0
  • [25] Pavol Quittner and Philippe Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal. 44 (2012), no. 4, 2545-2559. MR 3023387, https://doi.org/10.1137/11085428X
  • [26] Boyan Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ \mathbb{R}^n$, Comm. Math. Phys. 271 (2007), no. 1, 199-221. MR 2283958, https://doi.org/10.1007/s00220-006-0179-x
  • [27] Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. MR 0454365
  • [28] Juncheng Wei and Tobias Weth, Nonradial symmetric bound states for a system of coupled Schrödinger equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18 (2007), no. 3, 279-293. MR 2318821, https://doi.org/10.4171/RLM/495
  • [29] Juncheng Wei and Tobias Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal. 190 (2008), no. 1, 83-106. MR 2434901, https://doi.org/10.1007/s00205-008-0121-9
  • [30] Juncheng Wei and Wei Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal. 11 (2012), no. 3, 1003-1011. MR 2968605
  • [31] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1400007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58J10, 58J20

Retrieve articles in all journals with MSC (2010): 58J10, 58J20


Additional Information

Qihan He
Affiliation: School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, People’s Republic of China
Email: heqihan277@163.com

Shuangjie Peng
Affiliation: School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, People’s Republic of China
Email: sjpeng@mail.ccnu.edu.cn

DOI: https://doi.org/10.1090/proc/13160
Received by editor(s): October 10, 2014
Received by editor(s) in revised form: June 22, 2015
Published electronically: April 27, 2016
Communicated by: Nimish A. Shah
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society