Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The left side of Cichoń's diagram


Authors: Martin Goldstern, Diego Alejandro Mejía and Saharon Shelah
Journal: Proc. Amer. Math. Soc. 144 (2016), 4025-4042
MSC (2010): Primary 03E17, 03E35, 03E40
DOI: https://doi.org/10.1090/proc/13161
Published electronically: April 27, 2016
MathSciNet review: 3513558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a finite support iteration of ccc forcings, we construct a model of $ \aleph _1<\mathrm {add}(\mathcal {N})<\mathrm {cov}(\mathcal {N})<\mathfrak{b}< \mathrm {non}(\mathcal {M})<\mathrm {cov}(\mathcal {M})=\mathfrak{c}$.


References [Enhancements On Off] (What's this?)

  • [AY08] U. Abraham and Y. Yin, A note on the Engelking-Karłowicz theorem, Acta Math. Hungar. 120 (2008), no. 4, 391-404. MR 2452761, https://doi.org/10.1007/s10474-008-7160-4
  • [BJ95] Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295
  • [BM14] Jörg Brendle and Diego Alejandro Mejía, Rothberger gaps in fragmented ideals, Fund. Math. 227 (2014), no. 1, 35-68. MR 3247032, https://doi.org/10.4064/fm227-1-4
  • [Bre91] Jörg Brendle, Larger cardinals in Cichoń's diagram, J. Symbolic Logic 56 (1991), no. 3, 795-810. MR 1129144, https://doi.org/10.2307/2275049
  • [CKP85] Jacek Cichoń, Anastasis Kamburelis, and Janusz Pawlikowski,
    On dense subsets of the measure algebra,
    Proc. Amer. Math. Soc., 94(1):142-146, 1985.
  • [EK65] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285. MR 0196693
  • [FGKS15] Arthur Fischer, Martin Goldstern, Jakob Kellner, and Saharon Shelah, Creature forcing and five cardinal characteristics of the continuum,
    Arch. Math. Logic, to appear, 2015.
  • [Fre84] David H. Fremlin,
    Cichoń's diagram,
    Publ. Math. Univ. Pierre Marie Curie, Sémin. Initiation Anal., 66, 1984.
  • [Gol93] Martin Goldstern, Tools for your forcing construction, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 305-360. MR 1234283
  • [JS90] Haim Judah and Saharon Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), no. 3, 909-927. MR 1071305, https://doi.org/10.2307/2274464
  • [JS93] Haim Judah and Saharon Shelah, Adding dominating reals with the random algebra, Proc. Amer. Math. Soc. 119 (1993), no. 1, 267-273. MR 1152278, https://doi.org/10.2307/2159852
  • [Kam89] Anastasis Kamburelis, Iterations of Boolean algebras with measure, Arch. Math. Logic 29 (1989), no. 1, 21-28. MR 1022984, https://doi.org/10.1007/BF01630808
  • [KO14] Noboru Osuga and Shizuo Kamo, Many different covering numbers of Yorioka's ideals, Arch. Math. Logic 53 (2014), no. 1-2, 43-56. MR 3151397, https://doi.org/10.1007/s00153-013-0354-7
  • [Mej13] Diego Alejandro Mejía, Matrix iterations and Cichon's diagram, Arch. Math. Logic 52 (2013), no. 3-4, 261-278. MR 3047455, https://doi.org/10.1007/s00153-012-0315-6
  • [Mil81] Arnold W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), no. 1, 93-114. MR 613787, https://doi.org/10.2307/1998389
  • [Paw92] Janusz Pawlikowski, Adding dominating reals with $ \omega ^\omega $ bounding posets, J. Symbolic Logic 57 (1992), no. 2, 540-547. MR 1169191, https://doi.org/10.2307/2275289
  • [She00] Saharon Shelah, Covering of the null ideal may have countable cofinality, Fund. Math. 166 (2000), no. 1-2, 109-136. Saharon Shelah's anniversary issue. MR 1804707

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03E17, 03E35, 03E40

Retrieve articles in all journals with MSC (2010): 03E17, 03E35, 03E40


Additional Information

Martin Goldstern
Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria
Email: goldstern@tuwien.ac.at

Diego Alejandro Mejía
Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria
Address at time of publication: Department of Mathematics, Shizuoka University, Ohya 836, Shizuoka, 422-8529 Japan
Email: diego.mejia@shizuoka.ac.jp

Saharon Shelah
Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The hebrew University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
Email: shlhetal@math.huji.ac.il

DOI: https://doi.org/10.1090/proc/13161
Keywords: Forcing, eventually different reals, Cicho\'n's diagram, finite support iteration
Received by editor(s): April 19, 2015
Received by editor(s) in revised form: November 17, 2015
Published electronically: April 27, 2016
Additional Notes: This work was partially supported by European Research Council grant 338821. The first and second authors were supported by the Austrian Science Fund (FWF) P24725-N25 (first author), P23875-N13 and I1272-N25 (second author) and they were partially supported by the National Science Foundation under grant DMS-1101597. Publication 1066 on the third author’s list.
Communicated by: Mirna Džamonja
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society