Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quantization for a nonlinear Dirac equation


Author: Miaomiao Zhu
Journal: Proc. Amer. Math. Soc. 144 (2016), 4533-4544
MSC (2010): Primary 58J05, 53C27
DOI: https://doi.org/10.1090/proc/13041
Published electronically: March 17, 2016
MathSciNet review: 3531200
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study solutions of certain nonlinear Dirac-type equations on Riemann spin surfaces. We first improve an energy identity theorem for a sequence of such solutions with uniformly bounded energy in the case of a fixed domain. Then, we prove the corresponding energy identity in the case that the equations have constant coefficients and the domains possibly degenerate to a spin surface with only Neveu-Schwarz type nodes.


References [Enhancements On Off] (What's this?)

  • [1] Bernd Ammann, The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions, Comm. Anal. Geom. 17 (2009), no. 3, 429-479. MR 2550205 (2010k:53075), https://doi.org/10.4310/CAG.2009.v17.n3.a2
  • [2] Bernd Ammann and Christian Bär, Dirac eigenvalue estimates on surfaces, Math. Z. 240 (2002), no. 2, 423-449. MR 1900319 (2003g:58045), https://doi.org/10.1007/s002090100392
  • [3] Bernd Ammann and Emmanuel Humbert, The first conformal Dirac eigenvalue on 2-dimensional tori, J. Geom. Phys. 56 (2006), no. 4, 623-642. MR 2199284 (2007c:58044), https://doi.org/10.1016/j.geomphys.2005.04.007
  • [4] Christian Bär, The Dirac operator on hyperbolic manifolds of finite volume, J. Differential Geom. 54 (2000), no. 3, 439-488. MR 1823312 (2002c:58048)
  • [5] Qun Chen, Jürgen Jost, Jiayu Li, and Guofang Wang, Regularity theorems and energy identities for Dirac-harmonic maps, Math. Z. 251 (2005), no. 1, 61-84. MR 2176464 (2007a:58013), https://doi.org/10.1007/s00209-005-0788-7
  • [6] Qun Chen, Jürgen Jost, Jiayu Li, and Guofang Wang, Dirac-harmonic maps, Math. Z. 254 (2006), no. 2, 409-432. MR 2262709 (2007k:58021), https://doi.org/10.1007/s00209-006-0961-7
  • [7] Q. Chen, J. Jost, and G. Wang, Liouville theorems for Dirac-harmonic maps, J. Math. Phys. 48 (2007), no. 11, 113517, 13. MR 2370260 (2009e:58020), https://doi.org/10.1063/1.2809266
  • [8] Qun Chen, Jürgen Jost, and Guofang Wang, Nonlinear Dirac equations on Riemann surfaces, Ann. Global Anal. Geom. 33 (2008), no. 3, 253-270. MR 2390834 (2009g:58026), https://doi.org/10.1007/s10455-007-9084-6
  • [9] Weiyue Ding and Gang Tian, Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom. 3 (1995), no. 3-4, 543-554. MR 1371209 (97e:58055)
  • [10] Jürgen Jost, Two-dimensional geometric variational problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR 1100926 (92h:58045)
  • [11] Tyler J. Jarvis, Takashi Kimura, and Arkady Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001), no. 2, 157-212. MR 1827643 (2002d:14052), https://doi.org/10.1023/A:1017528003622
  • [12] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
  • [13] John Lott, $ \hat A$-genus and collapsing, J. Geom. Anal. 10 (2000), no. 3, 529-543. MR 1794576 (2001m:53082), https://doi.org/10.1007/BF02921948
  • [14] Thomas H. Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), no. 3, 595-633. MR 1431008 (98k:58069)
  • [15] Thomas H. Parker and Jon G. Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993), no. 1, 63-98. MR 1197017 (95c:58032), https://doi.org/10.1007/BF02921330
  • [16] I. A. Taimanov, The two-dimensional Dirac operator and the theory of surfaces, Uspekhi Mat. Nauk 61 (2006), no. 1(367), 85-164 (Russian, with Russian summary); English transl., Russian Math. Surveys 61 (2006), no. 1, 79-159. MR 2239773 (2007k:37098), https://doi.org/10.1070/RM2006v061n01ABEH004299
  • [17] Changyou Wang, A remark on nonlinear Dirac equations, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3753-3758. MR 2661574 (2011g:58055), https://doi.org/10.1090/S0002-9939-10-10438-9
  • [18] Rugang Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994), no. 2, 671-694. MR 1176088 (94f:58030), https://doi.org/10.2307/2154647
  • [19] Liang Zhao, Energy identities for Dirac-harmonic maps, Calc. Var. Partial Differential Equations 28 (2007), no. 1, 121-138. MR 2267756 (2007j:53069), https://doi.org/10.1007/s00526-006-0035-z
  • [20] Miaomiao Zhu, Harmonic maps from degenerating Riemann surfaces, Math. Z. 264 (2010), no. 1, 63-85. MR 2564932 (2011a:58031), https://doi.org/10.1007/s00209-008-0452-0
  • [21] Miaomiao Zhu, Dirac-harmonic maps from degenerating spin surfaces. I. The Neveu-Schwarz case, Calc. Var. Partial Differential Equations 35 (2009), no. 2, 169-189. MR 2481821 (2010e:58015), https://doi.org/10.1007/s00526-008-0201-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58J05, 53C27

Retrieve articles in all journals with MSC (2010): 58J05, 53C27


Additional Information

Miaomiao Zhu
Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
Address at time of publication: Department of Mathematics, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, People’s Republic of China
Email: mizhu@sjtu.edu.cn

DOI: https://doi.org/10.1090/proc/13041
Keywords: Dirac equation, energy identity, Neveu-Schwarz.
Received by editor(s): July 9, 2015
Received by editor(s) in revised form: November 20, 2015
Published electronically: March 17, 2016
Communicated by: Guofang Wei
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society