Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An application of free transport to mixed $ q$-Gaussian algebras


Authors: Brent Nelson and Qiang Zeng
Journal: Proc. Amer. Math. Soc. 144 (2016), 4357-4366
MSC (2010): Primary 46L54, 81S05
DOI: https://doi.org/10.1090/proc/13068
Published electronically: April 13, 2016
MathSciNet review: 3531185
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the mixed $ q$-Gaussian algebras introduced by Speicher which are generated by the variables $ X_i=l_i+l_i^*,i=1,\ldots ,N$, where $ l_i^* l_j-q_{ij}l_j l_i^*=\delta _{i,j}$ and $ -1<q_{ij}=q_{ji}<1$. Using the free monotone transport theorem of Guionnet and Shlyakhtenko, we show that the mixed $ q$-Gaussian von Neumann algebras are isomorphic to the free group von Neumann algebra $ L(\mathbb{F}_N)$, provided that $ \max _{i,j}\vert q_{ij}\vert$ is small enough. The proof relies on some estimates which are generalizations of Dabrowski's results for the special case $ q_{ij}\equiv q$.


References [Enhancements On Off] (What's this?)

  • [Avs11] S. Avsec, Strong Solidity of the q-Gaussian Algebras for all $ -1 < q < 1$, ArXiv e-prints (2011-10), available at 1110.4918.
  • [BKS97] Marek Bożejko, Burkhard Kümmerer, and Roland Speicher, $ q$-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), no. 1, 129-154. MR 1463036 (98h:81053), https://doi.org/10.1007/s002200050084
  • [Boż98] Marek Bożejko, Completely positive maps on Coxeter groups and the ultracontractivity of the $ q$-Ornstein-Uhlenbeck semigroup, Quantum probability (Gdańsk, 1997), 1998, pp. 87-93. MR 1649711 (2000k:20053)
  • [BS91] Marek Bożejko and Roland Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), no. 3, 519-531. MR 1105428 (92m:46096)
  • [BS94] Marek Bożejko and Roland Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), no. 1, 97-120. MR 1289833 (95g:46105), https://doi.org/10.1007/BF01450478
  • [Dab14] Yoann Dabrowski, A free stochastic partial differential equation, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 4, 1404-1455. MR 3270000, https://doi.org/10.1214/13-AIHP548
  • [GS14] A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math. 197 (2014), no. 3, 613-661. MR 3251831, https://doi.org/10.1007/s00222-013-0493-9
  • [Hia03] Fumio Hiai, $ q$-deformed Araki-Woods algebras, Operator algebras and mathematical physics (Constanţa, 2001) Theta, Bucharest, 2003, pp. 169-202. MR 2018229 (2004j:46086)
  • [JZ15] M. Junge and Q. Zeng, Mixed $ q$-Gaussian algebras, ArXiv e-prints (2015-05), available at 1505.07852.
  • [KN11] Matthew Kennedy and Alexandru Nica, Exactness of the Fock space representation of the $ q$-commutation relations, Comm. Math. Phys. 308 (2011), no. 1, 115-132. MR 2842972, https://doi.org/10.1007/s00220-011-1323-9
  • [Kro00] Ilona Krolak, Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors, Comm. Math. Phys. 210 (2000), no. 3, 685-701. MR 1777345 (2001i:46103)
  • [Kró05] Ilona Królak, Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations, Math. Z. 250 (2005), no. 4, 915-937. MR 2180382 (2006i:81105)
  • [LP99] Françoise Lust-Piquard, Riesz transforms on deformed Fock spaces, Comm. Math. Phys. 205 (1999), no. 3, 519-549. MR 1711277 (2001j:46104), https://doi.org/10.1007/s002200050688
  • [Nel15] Brent Nelson, Free monotone transport without a trace, Comm. Math. Phys. 334 (2015), no. 3, 1245-1298. MR 3312436, https://doi.org/10.1007/s00220-014-2148-0
  • [Nou04] Alexandre Nou, Non injectivity of the $ q$-deformed von Neumann algebra, Math. Ann. 330 (2004), no. 1, 17-38. MR 2091676 (2005k:46187), https://doi.org/10.1007/s00208-004-0523-4
  • [OP10] Narutaka Ozawa and Sorin Popa, On a class of $ {\rm II}_1$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713-749. MR 2680430 (2011j:46101), https://doi.org/10.4007/annals.2010.172.713
  • [Ric05] Éric Ricard, Factoriality of $ q$-Gaussian von Neumann algebras, Comm. Math. Phys. 257 (2005), no. 3, 659-665. MR 2164947 (2006e:46069), https://doi.org/10.1007/s00220-004-1266-5
  • [Shl04] Dimitri Shlyakhtenko, Some estimates for non-microstates free entropy dimension with applications to $ q$-semicircular families, Int. Math. Res. Not. 51 (2004), 2757-2772. MR 2130608 (2006e:46074), https://doi.org/10.1155/S1073792804140476
  • [Shl97] Dimitri Shlyakhtenko, Free quasi-free states, Pacific J. Math. 177 (1997), no. 2, 329-368. MR 1444786 (98b:46086), https://doi.org/10.2140/pjm.1997.177.329
  • [Śni04] Piotr Śniady, Factoriality of Bożejko-Speicher von Neumann algebras, Comm. Math. Phys. 246 (2004), no. 3, 561-567. MR 2053944 (2005d:46130)
  • [Spe93] Roland Speicher, Generalized statistics of macroscopic fields, Lett. Math. Phys. 27 (1993), no. 2, 97-104. MR 1213608 (94c:81096), https://doi.org/10.1007/BF00750677
  • [VDN92] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253 (94c:46133)
  • [Voi98] Dan Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), no. 1, 189-227. MR 1618636 (99d:46087), https://doi.org/10.1007/s002220050222

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L54, 81S05

Retrieve articles in all journals with MSC (2010): 46L54, 81S05


Additional Information

Brent Nelson
Affiliation: Department of Mathematics, University of California, Berkeley, California 94709
Email: brent@math.berkeley.edu

Qiang Zeng
Affiliation: Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Mathematics Department, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
Email: qzeng.math@gmail.com

DOI: https://doi.org/10.1090/proc/13068
Received by editor(s): July 23, 2015
Received by editor(s) in revised form: December 12, 2015
Published electronically: April 13, 2016
Additional Notes: The research of the first author was supported by the NSF awards DMS-1161411 and DMS-1502822.
Communicated by: Adrian Ioana
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society