Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A short proof of the Dimension Conjecture for real hypersurfaces in $ \mathbb{C}^2$

Authors: Alexander Isaev and Boris Kruglikov
Journal: Proc. Amer. Math. Soc. 144 (2016), 4395-4399
MSC (2010): Primary 32C05, 32V40
Published electronically: April 19, 2016
MathSciNet review: 3531189
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, I. Kossovskiy and R. Shafikov settled the so-called Dimension Conjecture, which characterizes spherical hypersurfaces in $ \mathbb{C}^2$ via the dimension of the algebra of infinitesimal CR-automorphisms. In this note, we propose a short argument for obtaining their result.

References [Enhancements On Off] (What's this?)

  • [BER] M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103 (2000b:32066)
  • [B1] V. K. Beloshapka, On the dimension of the group of automorphisms of an analytic hypersurface, Math. USSR, Izv. 14 (1980), 223-245.
  • [B2] V. K. Beloshapka, Holomorphic transformations of a quadric, Mat. Sb. 182 (1991), no. 2, 203-219 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 1, 189-205. MR 1103272 (92f:32065)
  • [B3] V. K. Beloshapka, Real submanifolds of a complex space: their polynomial models, automorphisms, and classification problems, Uspekhi Mat. Nauk 57 (2002), no. 1(342), 3-44 (Russian, with Russian summary); English transl., Russian Math. Surveys 57 (2002), no. 1, 1-41. MR 1914541 (2003e:32065),
  • [B4] V. K. Beloshapka, Can a stabilizer be eight-dimensional?, Russ. J. Math. Phys. 19 (2012), no. 2, 135-145. MR 2926319,
  • [C] Elie Cartan, Sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I, Ann. Math. Pura Appl. 11 (1932), 17-90 MR 1553196; II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333-354. MR 1556687
  • [CM] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 0425155 (54 #13112)
  • [EaI] Michael Eastwood and Alexander Isaev, Examples of unbounded homogeneous domains in complex space, Sci. China Ser. A 48 (2005), no. suppl., 248-261. MR 2156506 (2006c:32023),
  • [EzI] V. V. Ezhov and A. V. Isaev, On the dimension of the stability group for a Levi non-degenerate hypersurface, Illinois J. Math. 49 (2005), no. 4, 1155-1169. MR 2210357 (2007g:32026)
  • [GS] Victor W. Guillemin and Shlomo Sternberg, Remarks on a paper of Hermann, Trans. Amer. Math. Soc. 130 (1968), 110-116. MR 0217226 (36 #317)
  • [IZ] Alexander Isaev and Dmitri Zaitsev, Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms, J. Geom. Anal. 23 (2013), no. 3, 1571-1605. MR 3078365,
  • [KL] Martin Kolář and Bernhard Lamel, Holomorphic equivalence and nonlinear symmetries of ruled hypersurfaces in $ \mathbb{C}^2$, J. Geom. Anal. 25 (2015), no. 2, 1240-1281. MR 3319970,
  • [KS] Ilya Kossovskiy and Rasul Shafikov, Analytic differential equations and spherical real hypersurfaces, J. Differential Geom. 102 (2016), no. 1, 67-126. MR 3447087
  • [K] Boris Kruglikov, Point classification of second order ODEs: Tresse classification revisited and beyond, Differential equations: geometry, symmetries and integrability, Abel Symp., vol. 5, Springer, Berlin, 2009, pp. 199-221. With an appendix by Kruglikov and V. Lychagin. MR 2562566 (2011f:58065),
  • [KT] B. Kruglikov and D. The, The gap phenomenon in parabolic geometries, to appear in J. reine angew. Math., DOI: 10.1515/crelle-2014-0072,
  • [M] G. D. Mostow, On maximal subgroups of real Lie groups, Ann. of Math. (2) 74 (1961), 503-517. MR 0142687 (26 #256)
  • [P] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo 23 (1907), 185-220.
  • [Sa] Ichirô Satake, Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR 591460 (82i:32003)
  • [St] Nancy K. Stanton, Real hypersurfaces with no infinitesimal CR automorphisms, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 469-473. MR 1771288 (2001h:32065),
  • [Ta] Noboru Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131-190. MR 0589931 (58 #28645)
  • [Tr] A. Tresse, Détermination des Invariants Ponctuels de L'équation Différentielle Ordinaire du Second Ordre $ y'' = \omega (x,y,y')$, Preisschr. Fürstlich Jablon. Ges., Hirzel, Leipzig, 1896.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32C05, 32V40

Retrieve articles in all journals with MSC (2010): 32C05, 32V40

Additional Information

Alexander Isaev
Affiliation: Mathematical Sciences Institute, Australian National University, Acton, Australian Capital Territory 2601, Australia

Boris Kruglikov
Affiliation: Department of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway

Keywords: Real hypersurfaces in complex space, Lie algebras of infinitesimal CR-automorphisms.
Received by editor(s): October 8, 2015
Received by editor(s) in revised form: December 20, 2015
Published electronically: April 19, 2016
Additional Notes: The first author was supported by the Australian Research Council
Communicated by: Franc Forstneric
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society