Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On a lower bound of the Kobayashi metric


Author: Nikolai Nikolov
Journal: Proc. Amer. Math. Soc. 144 (2016), 4393-4394
MSC (2010): Primary 32F45
DOI: https://doi.org/10.1090/proc/13072
Published electronically: April 25, 2016
MathSciNet review: 3531188
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a lower bound of the Kobayashi metric of convex domains in $ \mathbb{C}^n$ does not hold for non-convex domains.


References [Enhancements On Off] (What's this?)

  • [1] E. Bedford and S. I. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), no. 5, 3–26 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 1–20. MR 1275970, https://doi.org/10.1070/SM1995v082n01ABEH003550
  • [2] Sidney Frankel, Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 183–208. MR 1128543, https://doi.org/10.1090/pspum/052.2/1128543
  • [3] Ian Graham, Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 233–238. MR 1128547, https://doi.org/10.1090/pspum/052.2/1128547
  • [4] Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
  • [5] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), no. 4, 257–261 (English, with Russian summary). MR 690838, https://doi.org/10.1007/BF02201775
  • [6] N. Nikolov, M. Trybuła, and L. Andreev, Boundary behavior of invariant functions on planar domains, Complex Var. Elliptic Equ., 2016, DOI 10.1080/17476933.2015.1136823.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32F45

Retrieve articles in all journals with MSC (2010): 32F45


Additional Information

Nikolai Nikolov
Affiliation: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria —and— Faculty of Information Sciences, State University of Library Studies and Information Technologies, Shipchenski prohod 69A, 1574 Sofia, Bulgaria
Email: nik@math.bas.bg

DOI: https://doi.org/10.1090/proc/13072
Keywords: Carath\'eodory and Kobayashi metrics, convex domain
Received by editor(s): December 17, 2015
Received by editor(s) in revised form: December 19, 2015
Published electronically: April 25, 2016
Communicated by: Franc Forstneric
Article copyright: © Copyright 2016 American Mathematical Society