Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tridiagonalization of the hypergeometric operator and the Racah-Wilson algebra


Authors: Vincent X. Genest, Mourad E. H. Ismail, Luc Vinet and Alexei Zhedanov
Journal: Proc. Amer. Math. Soc. 144 (2016), 4441-4454
MSC (2010): Primary 33C45, 33C80, 42C05
DOI: https://doi.org/10.1090/proc/13082
Published electronically: April 27, 2016
MathSciNet review: 3531193
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The algebraic underpinning of the tridiagonalization procedure is investigated. The focus is put on the tridiagonalization of the hypergeometric operator and its associated quadratic Jacobi algebra. It is shown that under tridiagonalization, the quadratic Jacobi algebra becomes the quadratic Racah-Wilson algebra associated to the generic Racah-Wilson polynomials. A degenerate case leading to the Hahn algebra is also discussed.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [2] Mesuma Atakishiyeva and Natig Atakishiyev, On lifting $ q$-difference operators in the Askey scheme of basic hypergeometric polynomials, J. Phys. A 43 (2010), no. 14, 145201, 18. MR 2606432 (2011e:33050), https://doi.org/10.1088/1751-8113/43/14/145201
  • [3] Christian Berg and Mourad E. H. Ismail, $ q$-Hermite polynomials and classical orthogonal polynomials, Canad. J. Math. 48 (1996), no. 1, 43-63. MR 1382475 (97b:33020), https://doi.org/10.4153/CJM-1996-002-4
  • [4] Joris Van der Jeugt, $ 3nj$-coefficients and orthogonal polynomials of hypergeometric type, Orthogonal polynomials and special functions (Leuven, 2002) Lecture Notes in Math., vol. 1817, Springer, Berlin, 2003, pp. 25-92. MR 2022852 (2005e:33009), https://doi.org/10.1007/3-540-44945-0_2
  • [5] Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, Superintegrability in two dimensions and the Racah-Wilson algebra, Lett. Math. Phys. 104 (2014), no. 8, 931-952. MR 3227700, https://doi.org/10.1007/s11005-014-0697-y
  • [6] Vincent X. Genest, Luc Vinet, and Alexei Zhedanov, The equitable Racah algebra from three $ \mathfrak{su}(1,1)$ algebras, J. Phys. A 47 (2014), no. 2, 025203, 12. MR 3150529, https://doi.org/10.1088/1751-8113/47/2/025203
  • [7] V. X. Genest, L. Vinet, and A. Zhedanov,
    The Racah algebra and superintegrable models,
    J. Phys.: Conf. Ser., 512:012011, 2014.
  • [8] Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov, Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Physics 217 (1992), no. 1, 1-20. MR 1173277 (93k:81072), https://doi.org/10.1016/0003-4916(92)90336-K
  • [9] Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683 (2010i:33001)
  • [10] Mourad E. H. Ismail and Erik Koelink, The $ J$-matrix method, Adv. in Appl. Math. 46 (2011), no. 1-4, 379-395. MR 2794029 (2012d:33018), https://doi.org/10.1016/j.aam.2010.10.005
  • [11] Mourad E. H. Ismail and Erik Koelink, Spectral analysis of certain Schrödinger operators, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 061, 19. MR 2970767, https://doi.org/10.3842/SIGMA.2012.061
  • [12] Mourad E. H. Ismail and Erik Koelink, Spectral properties of operators using tridiagonalization, Anal. Appl. (Singap.) 10 (2012), no. 3, 327-343. MR 2948897, https://doi.org/10.1142/S0219530512500157
  • [13] Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $ q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder. MR 2656096 (2011e:33029)
  • [14] T. H. Koornwinder, Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. 174-183. MR 838982 (87g:33007), https://doi.org/10.1007/BFb0076542
  • [15] A. S. Zhedanov, ``Hidden symmetry'' of Askey-Wilson polynomials, Teoret. Mat. Fiz. 89 (1991), no. 2, 190-204 (Russian, with English summary); English transl., Theoret. and Math. Phys. 89 (1991), no. 2, 1146-1157 (1992). MR 1151381 (93f:33019), https://doi.org/10.1007/BF01015906

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C45, 33C80, 42C05

Retrieve articles in all journals with MSC (2010): 33C45, 33C80, 42C05


Additional Information

Vincent X. Genest
Affiliation: Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec H3C 3J7 Canada
Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
Email: vxgenest@mit.edu

Mourad E. H. Ismail
Affiliation: Department of Mathematics, King Saud University, Riyadh, Saudi Arabia–and– Department of Mathematics, University of Central Florida, Orlando, Florida 32816
Email: mourad.eh.ismail@gmail.com

Luc Vinet
Affiliation: Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec H3C 3J7 Canada
Email: vinetl@crm.umontreal.ca

Alexei Zhedanov
Affiliation: Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, Québec H3C 3J7 Canada
Email: zhedanov@yahoo.com

DOI: https://doi.org/10.1090/proc/13082
Received by editor(s): June 25, 2015
Received by editor(s) in revised form: December 29, 2015
Published electronically: April 27, 2016
Communicated by: Walter Van Assche
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society