Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Minimal sets for group actions on dendrites


Authors: Habib Marzougui and Issam Naghmouchi
Journal: Proc. Amer. Math. Soc. 144 (2016), 4413-4425
MSC (2010): Primary 37B20, 37E99
DOI: https://doi.org/10.1090/proc/13103
Published electronically: April 25, 2016
MathSciNet review: 3531191
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group acting by homeomorphisms on a dendrite $ X$. First, we show that any minimal set $ M$ of $ G$ is either a finite orbit or a Cantor set (resp. a finite orbit) when the set of endpoints of $ X$ is closed (resp. countable). Furthermore, we prove, regardless of the type of the dendrite $ X$, that if the action of $ G$ on $ X$ has at least two minimal sets, then necessarily it has a finite orbit (and even an orbit consisting of one or two points). Second, we explore the topological and geometrical properties of infinite minimal sets when the action of $ G$ has a finite orbit. We show in this case that any infinite minimal set $ M$ is a Cantor set which is the set of endpoints of its convex hull $ [M]$ and there is no other infinite minimal set in $ [M]$. On the other hand, we consider the family $ \mathcal {M}$ of all minimal sets in the hyperspace $ 2^{X}$ (endowed with the Hausdorff metric). We prove that $ \mathcal {M}$ is closed in $ 2^{X}$ and that the family $ \mathcal {F}$ of all finite orbits (when it is non-empty) is dense in $ \mathcal {M}$. As a consequence, the union of all minimal sets of $ G$ is closed in $ X$.


References [Enhancements On Off] (What's this?)

  • [1] Jan M. Aarts and Fons G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology Appl. 96 (1999), no. 1, 93-96. MR 1701244 (2000d:54040), https://doi.org/10.1016/S0166-8641(98)00041-8
  • [2] Daniel Arévalo, Włodzimierz J. Charatonik, Patricia Pellicer Covarrubias, and Likin Simón, Dendrites with a closed set of end points, Topology Appl. 115 (2001), no. 1, 1-17. MR 1840729 (2002f:54023), https://doi.org/10.1016/S0166-8641(00)00058-4
  • [3] Ghassen Askri and Issam Naghmouchi, Topological size of scrambled sets for local dendrite maps, Topology Appl. 164 (2014), 95-104. MR 3160464, https://doi.org/10.1016/j.topol.2013.12.005
  • [4] J. Auslander, E. Glasner, and B. Weiss, On recurrence in zero dimensional flows, Forum Math. 19 (2007), no. 1, 107-114. MR 2296067 (2008c:37025), https://doi.org/10.1515/FORUM.2007.004
  • [5] Francisco Balibrea, Roman Hric, and L'ubomír Snoha, Minimal sets on graphs and dendrites, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 7, 1721-1725. Dynamical systems and functional equations (Murcia, 2000). MR 2015622 (2004i:37083), https://doi.org/10.1142/S0218127403007576
  • [6] Alan F. Beardon, Iteration of rational functions: Complex analytic dynamical systems, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. MR 1128089 (92j:30026)
  • [7] Włodzimierz J. Charatonik, Evan P. Wright, and Sophia S. Zafiridou, Dendrites with a countable set of end points and universality, Houston J. Math. 39 (2013), no. 2, 651-666. MR 3080459
  • [8] L. S. Efremova and E. N. Makhrova, The dynamics of monotone mappings of dendrites, Mat. Sb. 192 (2001), no. 6, 15-30 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 5-6, 807-821. MR 1860139 (2002g:37017), https://doi.org/10.1070/SM2001v192n06ABEH000570
  • [9] J.R. Isbell, Commuting mappings of trees, Bull. Amer. Math. Soc., 63 (1957), 419.
  • [10] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. MR 0259835 (41 #4467)
  • [11] Jiehua Mai and Enhui Shi, The nonexistence of expansive commutative group actions on Peano continua having free dendrites, Topology Appl. 155 (2007), no. 1, 33-38. MR 2363562 (2008j:37034), https://doi.org/10.1016/j.topol.2007.08.010
  • [12] Jiehua Mai and Enhui Shi, $ \overline R=\overline P$ for maps of dendrites $ X$ with $ {\rm Card}({\rm End}(X))<c$, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), no. 4, 1391-1396. MR 2537728 (2010g:37028), https://doi.org/10.1142/S021812740902372X
  • [13] Sam B. Nadler Jr., Continuum theory: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. MR 1192552 (93m:54002)
  • [14] Issam Naghmouchi, Dynamics of monotone graph, dendrite and dendroid maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 (2011), no. 11, 3205-3215. MR 2871971, https://doi.org/10.1142/S0218127411030465
  • [15] Issam Naghmouchi, Pointwise-recurrent dendrite maps, Ergodic Theory Dynam. Systems 33 (2013), no. 4, 1115-1123. MR 3082541, https://doi.org/10.1017/S0143385712000296
  • [16] Issam Naghmouchi, Dynamical properties of monotone dendrite maps, Topology Appl. 159 (2012), no. 1, 144-149. MR 2852955 (2012k:37041), https://doi.org/10.1016/j.topol.2011.08.020
  • [17] John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478 (2007d:57029)
  • [18] Enhui Shi, Suhua Wang, and Lizhen Zhou, Minimal group actions on dendrites, Proc. Amer. Math. Soc. 138 (2010), no. 1, 217-223. MR 2550186 (2010m:37014), https://doi.org/10.1090/S0002-9939-09-10000-X
  • [19] Enhui Shi and Binyong Sun, Fixed point properties of nilpotent group actions on 1-arcwise connected continua, Proc. Amer. Math. Soc. 137 (2009), no. 2, 771-775. MR 2448600 (2009j:54055), https://doi.org/10.1090/S0002-9939-08-09522-1
  • [20] Enhui Shi and Lizhen Zhou, Periodic points of solvable group actions on 1-arcwise connected continua, Topology Appl. 157 (2010), no. 7, 1163-1167. MR 2607082 (2011g:54022), https://doi.org/10.1016/j.topol.2010.02.006

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B20, 37E99

Retrieve articles in all journals with MSC (2010): 37B20, 37E99


Additional Information

Habib Marzougui
Affiliation: Faculty of Sciences of Bizerte, Department of Mathematics, University of Carthage, Jarzouna, 7021, Tunisia
Email: hmarzoug@ictp.it; habib.marzougui@fsb.rnu.tn

Issam Naghmouchi
Affiliation: Faculty of Sciences of Bizerte, Department of Mathematics, University of Carthage, Jarzouna, 7021, Tunisia
Email: issam.nagh@gmail.com; issam.naghmouchi@fsb.rnu.tn

DOI: https://doi.org/10.1090/proc/13103
Keywords: Dendrite, dendrite map, minimal set, group action, orbit.
Received by editor(s): March 13, 2015
Received by editor(s) in revised form: September 24, 2015, and December 23, 2015
Published electronically: April 25, 2016
Communicated by: Nimish A. Shah
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society