Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Products of flat modules and global dimension relative to $ \mathcal F$-Mittag-Leffler modules

Author: Manuel Cortés-Izurdiaga
Journal: Proc. Amer. Math. Soc. 144 (2016), 4557-4571
MSC (2010): Primary 16D40, 16E10
Published electronically: July 21, 2016
MathSciNet review: 3544508
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be any ring. We prove that all direct products of flat right $ R$-modules have finite flat dimension if and only if each finitely generated left ideal of $ R$ has finite projective dimension relative to the class of all $ \mathcal F$-Mittag-Leffler left $ R$-modules, where $ \mathcal F$ is the class of all flat right $ R$-modules. In order to prove this theorem, we obtain a general result concerning global relative dimension. Namely, if $ \mathcal X$ is any class of left $ R$-modules closed under filtrations that contains all projective modules, then $ R$ has finite left global projective dimension relative to $ \mathcal X$ if and only if each left ideal of $ R$ has finite projective dimension relative to $ \mathcal X$. This result contains, as particular cases, the well-known results concerning the classical left global, weak and Gorenstein global dimensions.

References [Enhancements On Off] (What's this?)

  • [1] Jiří Adámek and Jiří Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136
  • [2] Lidia Angeleri Hügel and Dolors Herbera, Mittag-Leffler conditions on modules, Indiana Univ. Math. J. 57 (2008), no. 5, 2459-2517. MR 2463975,
  • [3] Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67-77. MR 0074406
  • [4] Goro Azumaya and Alberto Facchini, Rings of pure global dimension zero and Mittag-Leffler modules, J. Pure Appl. Algebra 62 (1989), no. 2, 109-122. MR 1027751,
  • [5] Apostolos Beligiannis and Idun Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207. MR 2327478,
  • [6] Driss Bennis and Najib Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. MR 2557164,
  • [7] Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260
  • [8] Edgar E. Enochs, Manuel Cortés-Izurdiaga, and Blas Torrecillas, Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554. MR 3175039,
  • [9] E. Enochs, S. Estrada, and J. R. García-Rozas, Gorenstein categories and Tate cohomology on projective schemes, Math. Nachr. 281 (2008), no. 4, 525-540. MR 2404296,
  • [10] E. Enochs, S. Estrada, and A. Iacob, Rings with finite Gorenstein global dimension, Math. Scand. 102 (2008), no. 1, 45-58. MR 2420678
  • [11] Edgar E. Enochs, Alina Iacob, and Overtoun M. G. Jenda, Closure under transfinite extensions, Illinois J. Math. 51 (2007), no. 2, 561-569. MR 2342674
  • [12] Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra. Volume 1, Second revised and extended edition, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. MR 2857612
  • [13] M. Cortés Izurdiaga, S. Estrada, and P. A. Guil Asensio, A model structure approach to the finitistic dimension conjectures, Math. Nachr. 285 (2012), no. 7, 821-833. MR 2924515,
  • [14] Sarah Glaz, Prüfer conditions in rings with zero-divisors, Arithmetical properties of commutative rings and monoids, Lect. Notes Pure Appl. Math., vol. 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 272-281. MR 2140700,
  • [15] Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. MR 2251271
  • [16] K. R. Goodearl, Distributing tensor product over direct product, Pacific J. Math. 43 (1972), 107-110. MR 0311714
  • [17] Dolors Herbera and Jan Trlifaj, Almost free modules and Mittag-Leffler conditions, Adv. Math. 229 (2012), no. 6, 3436-3467. MR 2900444,
  • [18] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901
  • [19] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de ``platification'' d'un module, Invent. Math. 13 (1971), 1-89 (French). MR 0308104
  • [20] Ph. Rothmaler, Mittag-Leffler Modules and Positive Atomicity, Habilitantionsschrift, Kiel, 1994.
  • [21] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York, 2009. MR 2455920
  • [22] Jan Št'ovíček, Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math. 25 (2013), no. 1, 193-219. MR 3010854

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16D40, 16E10

Retrieve articles in all journals with MSC (2010): 16D40, 16E10

Additional Information

Manuel Cortés-Izurdiaga
Affiliation: Departamento de Matemáticas, University of Almeria, E-04071, Almeria, Spain

Keywords: Products of flat modules, global dimension, global dimension relative to Mittag-Leffler modules
Received by editor(s): August 4, 2014
Published electronically: July 21, 2016
Additional Notes: Part of this paper was written while the author was visiting the School of Mathematics at the University of Manchester. The author is very grateful to Mike Prest for his hospitality and for many interesting discussions on the subject
The author was partially supported by research project MTM-2014-54439 and by research group “Categorías, computación y teoría de anillos” (FQM211) of the University of Almería
Communicated by: Harm Derksen
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society