Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Higher order symmetries of real hypersurfaces in $ \mathbb{C}^3$


Authors: Martin Kolar and Francine Meylan
Journal: Proc. Amer. Math. Soc. 144 (2016), 4807-4818
MSC (2010): Primary 32V35, 32V40
DOI: https://doi.org/10.1090/proc/13090
Published electronically: April 25, 2016
MathSciNet review: 3544531
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study nonlinear automorphisms of Levi degenerate hypersurfaces of finite multitype. By results of Kolar, Meylan, and Zaitsev in 2014, the Lie algebra of infinitesimal CR automorphisms may contain a graded component consisting of nonlinear vector fields of arbitrarily high degree, which has no analog in the classical Levi nondegenerate case, or in the case of finite type hypersurfaces in $ \mathbb{C}^2$. We analyze this phenomenon for hypersurfaces of finite Catlin multitype with holomorphically nondegenerate models in complex dimension three. The results provide a complete classification of such manifolds. As a consequence, we show on which hypersurfaces 2-jets are not sufficient to determine an automorphism. The results also confirm a conjecture about the origin of nonlinear automorphisms of Levi degenerate hypersurfaces, formulated by the first author for an AIM workshop in 2010.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi, Peter Ebenfelt, and Xiaojun Huang, Super-rigidity for CR embeddings of real hypersurfaces into hyperquadrics, Adv. Math. 219 (2008), no. 5, 1427-1445. MR 2458142 (2010b:32051), https://doi.org/10.1016/j.aim.2008.07.001
  • [2] E. Bedford and S. I. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), no. 5, 3-26 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 1-20. MR 1275970 (95e:32037), https://doi.org/10.1070/SM1995v082n01ABEH003550
  • [3] V. K. Beloshapka, V. V. Ezhov, and G. Schmalz, Holomorphic classification of four-dimensional surfaces in $ \mathbb{C}^3$, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), no. 3, 3-18 (Russian, with Russian summary); English transl., Izv. Math. 72 (2008), no. 3, 413-427. MR 2432751 (2009g:32074), https://doi.org/10.1070/IM2008v072n03ABEH002406
  • [4] V. K. Beloshapka and I. G. Kossovskiy, Classification of homogeneous CR-manifolds in dimension 4, J. Math. Anal. Appl. 374 (2011), no. 2, 655-672. MR 2729251 (2011j:32053), https://doi.org/10.1016/j.jmaa.2010.07.008
  • [5] Thomas Bloom and Ian Graham, On ``type'' conditions for generic real submanifolds of $ {\bf C}^{n}$, Invent. Math. 40 (1977), no. 3, 217-243. MR 0589930 (58 #28644)
  • [6] Thomas Bloom and Ian Graham, A geometric characterization of points of type $ m$ on real submanifolds of $ {\bf C}^{n}$, J. Differential Geometry 12 (1977), no. 2, 171-182. MR 0492369 (58 #11495)
  • [7] Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in $ {\bf C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125-322. MR 684898 (85a:32025), https://doi.org/10.1090/S0273-0979-1983-15087-5
  • [8] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I , Ann. Math. Pura Appl. 11 (1932), 17-90.
  • [9] David Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529-586. MR 769163 (86c:32019), https://doi.org/10.2307/1971087
  • [10] David Catlin, Subelliptic estimates for the $ \overline \partial $-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131-191. MR 898054 (88i:32025), https://doi.org/10.2307/1971347
  • [11] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 0425155 (54 #13112)
  • [12] John P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. MR 657241 (84a:32027), https://doi.org/10.2307/2007015
  • [13] Peter Ebenfelt, New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy, J. Differential Geom. 50 (1998), no. 2, 207-247. MR 1684982 (2000a:32077)
  • [14] Peter Ebenfelt, Xiaojun Huang, and Dmitri Zaitsev, The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), no. 1, 169-191. MR 2115664 (2006c:32047)
  • [15] Peter Ebenfelt, Bernhard Lamel, and Dmitri Zaitsev, Degenerate real hypersurfaces in $ \mathbb{C}^2$ with few automorphisms, Trans. Amer. Math. Soc. 361 (2009), no. 6, 3241-3267. MR 2485425 (2010f:32037), https://doi.org/10.1090/S0002-9947-09-04626-1
  • [16] P. Ebenfelt, B. Lamel, and D. Zaitsev, Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case, Geom. Funct. Anal. 13 (2003), no. 3, 546-573. MR 1995799 (2004g:32033), https://doi.org/10.1007/s00039-003-0422-y
  • [17] Gregor Fels and Wilhelm Kaup, Classification of Levi degenerate homogeneous CR-manifolds in dimension 5, Acta Math. 201 (2008), no. 1, 1-82. MR 2448066 (2009k:32045), https://doi.org/10.1007/s11511-008-0029-0
  • [18] Xiaojun Huang and Wanke Yin, A Bishop surface with a vanishing Bishop invariant, Invent. Math. 176 (2009), no. 3, 461-520. MR 2501295 (2010f:32039), https://doi.org/10.1007/s00222-008-0167-1
  • [19] Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008. MR 2363178 (2009b:34001)
  • [20] A. V. Isaev and S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), no. 1, 1-38. MR 1706680 (2000i:32053), https://doi.org/10.1006/aima.1998.1821
  • [21] Howard Jacobowitz, An introduction to CR structures, Mathematical Surveys and Monographs, vol. 32, American Mathematical Society, Providence, RI, 1990. MR 1067341 (93h:32023)
  • [22] J. J. Kohn, Boundary behavior of $ \delta $ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523-542. Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. MR 0322365 (48 #727)
  • [23] Martin Kolar, Francine Meylan, and Dmitri Zaitsev, Chern-Moser operators and polynomial models in CR geometry, Adv. Math. 263 (2014), 321-356. MR 3239141, https://doi.org/10.1016/j.aim.2014.06.017
  • [24] Martin Kolář and Francine Meylan, Infinitesimal CR automorphisms of hypersurfaces of finite type in $ \mathbb{C}^2$, Arch. Math. (Brno) 47 (2011), no. 5, 367-375. MR 2876940 (2012m:32038)
  • [25] Martin Kolář, The Catlin multitype and biholomorphic equivalence of models, Int. Math. Res. Not. IMRN 18 (2010), 3530-3548. MR 2725504 (2011m:32066), https://doi.org/10.1093/imrn/rnq013
  • [26] Martin Kolář, Normal forms for hypersurfaces of finite type in $ {\mathbb{C}}^2$, Math. Res. Lett. 12 (2005), no. 5-6, 897-910. MR 2189248 (2007d:32034), https://doi.org/10.4310/MRL.2005.v12.n6.a10
  • [27] Martin Kolář and Francine Meylan, Chern-Moser operators and weighted jet determination problems, Geometric analysis of several complex variables and related topics, Contemp. Math., vol. 550, Amer. Math. Soc., Providence, RI, 2011, pp. 75-88. MR 2868555, https://doi.org/10.1090/conm/550/10867
  • [28] M. Kolář and F. Meylan, Automorphism groups of Levi degenerate hypersurfaces in $ \mathbb{C}^3$, preprint
  • [29] N. G. Kruzhilin and A. V. Loboda, Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), no. 2, 280-282 (Russian). MR 718188 (85c:32052)
  • [30] Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220.
  • [31] Nancy K. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118 (1996), no. 1, 209-233. MR 1375306 (97h:32027)
  • [32] A. G. Vitushkin, Real-analytic hypersurfaces of complex manifolds, Uspekhi Mat. Nauk 40 (1985), no. 2(242), 1-35, 237 (Russian). MR 786085 (86h:32031)
  • [33] S. M. Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), no. 2, 97-102. MR 486511 (80b:32008), https://doi.org/10.1007/BF01421918

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32V35, 32V40

Retrieve articles in all journals with MSC (2010): 32V35, 32V40


Additional Information

Martin Kolar
Affiliation: Department of Mathematics and Statistics, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
Email: mkolar@math.muni.cz

Francine Meylan
Affiliation: Department of Mathematics, University of Fribourg, CH 1700 Perolles, Fribourg, Switzerland
Email: francine.meylan@unifr.ch

DOI: https://doi.org/10.1090/proc/13090
Received by editor(s): August 10, 2015
Received by editor(s) in revised form: January 11, 2016
Published electronically: April 25, 2016
Additional Notes: The first author was supported by the project CZ.1.07/2.3.00/20.0003 of the Operational Programme Education for Competitiveness of the Ministry of Education, Youth and Sports of the Czech Republic.
The second author was supported by Swiss NSF Grant 2100-063464.00/1
Communicated by: Franc Forstneric
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society