Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global and blow up solutions to cross diffusion systems on 3D domains


Authors: Dung Le and Vu Thanh Nguyen
Journal: Proc. Amer. Math. Soc. 144 (2016), 4845-4859
MSC (2010): Primary 35J70, 35B65; Secondary 42B37
DOI: https://doi.org/10.1090/proc/13102
Published electronically: April 20, 2016
MathSciNet review: 3544534
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions for global existence of classical solutions to a class of cross diffusion systems on 3-dimensional domains are studied. Examples of blow up solutions are also given.


References [Enhancements On Off] (What's this?)

  • [1] Dung Le and Vu Thanh Nguyen, Global solutions to cross diffusion parabolic systems on 2D domains, Proc. Amer. Math. Soc. 143 (2015), no. 7, 2999-3010. MR 3336624, https://doi.org/10.1090/S0002-9939-2015-12501-4
  • [2] Herbert Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13-75. MR 1014726 (90i:35124)
  • [3] Herbert Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z. 202 (1989), no. 2, 219-250. MR 1013086 (90i:35125), https://doi.org/10.1007/BF01215256
  • [4] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088 (56 #3433)
  • [5] Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1962933 (2004g:49003)
  • [6] Konrad Horst Wilhelm Küfner, Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model, NoDEA Nonlinear Differential Equations Appl. 3 (1996), no. 4, 421-444. MR 1418589 (97m:35135), https://doi.org/10.1007/BF01193829
  • [7] Le Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems, J. Differential Equations 147 (1998), no. 1, 1-29. MR 1632736 (99f:35086), https://doi.org/10.1006/jdeq.1998.3435
  • [8] Dung Le, Cross diffusion systems on $ n$ spatial dimensional domains, Indiana Univ. Math. J. 51 (2002), no. 3, 625-643. MR 1911048 (2003b:35090), https://doi.org/10.1512/iumj.2002.51.2198
  • [9] Le Dung and Hal L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations 130 (1996), no. 1, 59-91. MR 1409023 (98c:92008), https://doi.org/10.1006/jdeq.1996.0132
  • [10] D. Le, L. Nguyen and T. Nguyen,
    Coexistence in Cross Diffusion systems, Indiana Univ. J. Math., Vol. 56, No. 4, pp. 1749-1791, 2007.
  • [11] Yuan Lou and Wei-Ming Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79-131. MR 1415047 (97i:35086), https://doi.org/10.1006/jdeq.1996.0157
  • [12] Nanako Shigesada, Kohkichi Kawasaki, and Ei Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), no. 1, 83-99. MR 540951 (80e:92038), https://doi.org/10.1016/0022-5193(79)90258-3
  • [13] Zhuangyi Liu and Songmu Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 398, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1681343 (2000c:47080)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J70, 35B65, 42B37

Retrieve articles in all journals with MSC (2010): 35J70, 35B65, 42B37


Additional Information

Dung Le
Affiliation: Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
Email: dle@math.utsa.edu

Vu Thanh Nguyen
Affiliation: Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
Email: vu.nguyen@utsa.edu

DOI: https://doi.org/10.1090/proc/13102
Keywords: Elliptic systems, H\"older regularity, $A_p$ weights, BMO weak solutions
Received by editor(s): November 2, 2014
Received by editor(s) in revised form: January 16, 2016
Published electronically: April 20, 2016
Additional Notes: The second author was partially supported by NSF grant DMS0707229
Communicated by: Catherine Sulem
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society